
Online Linear Optimization with
Inventory Management Constraints

Submission #16
ABSTRACT

This paper considers the problem of online linear optimization with
inventory management constraints. Specifically, we consider an
online scenario where a decision maker needs to satisfy her time-
varying demand for some units of an asset, either from a market
with time-varying price or from her own inventory. In each time
slot, the decision maker is presented a (linear) price and must imme-
diately decide the amount to purchase to cover the demand and/or
to store in inventory for future use. The inventory has a limited
capacity and can be used to buy and store assets at low price and in
order to cover the demand when price is high. The ultimate goal of
the decision maker is to cover the demand at each time slot, while
minimizing the cost of buying assets from the market. We propose
ARP, an online algorithm for linear programming with inventory
constraints, and ARPRate, an extended version that handles rate
constraints to/from the inventory. Both ARP and ARPRate achieve
optimal competitive ratios, meaning that no other online algorithm
can achieve a better theoretical guarantee. To illustrate the results,
we use the proposed algorithms in a case study focused on energy
procurement and storage management strategies for data centers.

KEYWORDS

Online linear optimization, inventory management, competitive
online algorithms, energy procurement, data center
ACM Reference Format:

Submission #16. 2020. Online Linear Optimization with Inventory Manage-
ment Constraints. In ACM Sigmetrics ’20, June 8–12, 2020, Boston, MA. ACM,
New York, NY, USA, 16 pages.

1 INTRODUCTION

Online optimization and decision making under uncertainty are
classical topics that have been studied in a broad set of applications
using a wide range of theoretical tools. On the theoretical side, the
topic has been approached from the perspective of online algo-
rithms using competitive analysis [17], online learning with the
regret as the performance metric [38, 60], and reinforcement learn-
ing with different modeling techniques such as Markov Decision
Processes (MDPs) [53]. On the application side, recent scenarios
where theoretical results have had an impact for real-world design
include data center optimization [11, 12, 43, 52, 55], energy sys-
tems [36, 41, 62, 66], cloud management [42, 46, 63], and computer
and communication networks [21, 30, 32, 37].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Sigmetrics ’20, June 8–12, 2020, Boston, MA
© 2020 Association for Computing Machinery.

This paper studies a variation of the classical online optimization
formulation: online linear optimization with inventory management
constraints (OLIM). In this problem, in each slot, a decision maker
should satisfy a demand of d(t) units of an asset, either from a
market with time-varying price or from her own inventory with a
finite capacity of B < ∞. In slot t , the decision maker is presented
a price p(t), and must decide the amount to procure, x(t), which
can be used to cover the demand d(t) or to store in inventory for
future use. The goal of the decision maker is to cover the demands
while minimizing the cost of buying from the market through the
use of the inventory.

While online linear optimization has been studied for decades [8,
13, 24, 40, 50], progress on online linear optimization with inventory
constraints has only begun to occur in recent years, e.g., [22, 23,
44], with most work focusing on special cases. The reason is that
inventorymanagement constraints couple the decision of the online
agent across rounds in an unavoidable way. So, without knowledge
of future prices it is challenging to design algorithms with provable
worst-case guarantees.

OLIM is of particular interest due to its relationships to clas-
sical problems in the online algorithms community. Specifically,
OLIM is a generalization of several classic online algorithmic prob-
lems in the area of online search or conversion problems [47]. No-
table examples include the time series search and one-way trading
problems [26], the multiple-choice secretary problem [14], the k-
search problem [45], and online linear programs with covering
constraints [18]. In contrast to these problems, in OLIM there is
uncertainty not just in the arriving costs, but also in the arrival
of demand. In other words, OLIM has two sets of uncertain input
parameters, which gives the adversary more power to construct
worst-case instances. In addition, OLIM incorporates inventory
management constraints to track the arrival and departures to the
inventory over time.

Beyond its algorithmic interest, our interest in OLIM stems from
its connection to the problem of energy storage management when
procuring energy from the electricity markets. Energy procurement
and storage management is a challenging problem for large-scale
electricity customers such as data centers, university campuses,
or enterprise headquarters. Usually, these customers can satisfy
their energy demand from a portfolio of sources, including the
grid, local renewable sources, and on-site energy storage systems.
Notable examples are thermal energy storage in Google data cen-
ter in Taiwan [3], Tesla batteries to power Amazon data center in
California [6], Google data center with on-site renewable sources
in Belgium [4], and large-scale batteries in Apple Park’s micro-
grid [2]. However, the electricity pricing for large customers is
moving toward real-time pricing where price changes dynamically
over time [33, 59, 62]. To counter this volatility, on-site storage
systems are necessary, since they enable purchasing energy at low

Sigmetrics ’20, June 8–12, 2020, Boston, MA Submission #16

price periods. However, the management of such storage systems
is challenging and can be captured via OLIM.

Summary of Contributions. In this paper, we develop prov-
ably optimal online algorithms for OLIM. More specifically, we
propose two new algorithms: ARP1 (§3.1) and ARPRate (§3.3). ARP
is the simpler of the two, and works for OLIM problems that have
no rate constraints, i.e., no limit on input and output rate to/from
the inventory at any slot. ARPRate is more complex, but works in
a more general context, where the input and output rates (a.k.a.,
charge and discharge rates) are bounded.

The high-level intuition behind ARP is to store assets when prices
are low and use the stored assets when the price rises. However, the
fact that prices and demands are dynamic makes this challenging.
The main ideas in the design of ARP are: (i) adaptive reservation
based on inventory utilization that manages the challenges due to
price dynamics; and (ii) the construction of virtual inventory that is
used to tackle the challenges due to demand dynamics. The notion
of virtual inventory is an algorithmic advance compared to previous
work [22, 23]. In particular, given some back-up assets in inventory,
one can see satisfying the demand in each slot as the buying (min-
imization) version of an online k-search problem2 [45] with the
current demand as the target amount. However, the dynamic arrival
of demands makes these online search problems coupled over time,
and exacerbates the competitive analysis of the algorithms. Virtual
inventory allows this to be managed. The full details are provided
in §3.1 with analysis in §3.2.

ARPRate extends ARP to the case with rate constraints that limit
the x(t) in each time slot to respect the limits of the inventory. In the
energy storage management example, the rate constraints capture
the charge/discharge limits of the batteries. Rate constraints add
considerable complexity and have not been previously included
in online optimization problems with inventory constraints. Two
significant changes when generalizing from ARP to ARPRate are:
(i) adaptive determination of the capacity of virtual inventorys to
reflect the output rate, and (ii) adaptive setting of reservation price
to reflect the input constraints. The full details are provided in §3.3.

Our main technical results provide an analysis of the competi-
tive ratios for ARP and ARPRate. These results are summarized in
Theorems 1 and 2 below.

Theorem 1. With the following reservation function

GBi (p) = αBi ln
[(
1 −

p

pmax

)
α

α − 1

]
, p ∈

[
pmin,

pmax
α

]
, (1)

ARP achieves the optimal competitive ratio of α as

α =

(
W

(
−

θ − 1
θ exp(1)

)
+ 1

)−1
. (2)

Theorem 2. ARPRate achieves the optimal competitive ratio of
α as in Equation (2).

Note that, in Equation (2), θ is the price fluctuation ratio, i.e.,
θ = pmax/pmin, andW (.) is Lambert-W function, defined as the
inverse of f (z) = z exp(z).
1ARP is short for Adaptive Reservation Price.
2In the minimization version of online k -search problem, a player must buy k ≥ 1
units of an asset with the goal of minimizing the cost. In each slot t = {1, . . . , T },
the player is presented a price p(t), and must immediately decide whether or not to
buy some units of the asset given p(t). Details in [45].

20 40 60 80 100 120 140
2

4

6

8

10

12

C
o

m
p

e
ti
ti
v
e

 R
a

ti
o

Figure 1: An illustration of competitive ratio in Equation (2)
as a function of θ in comparison with

√
θ [23] and logθ .

Interestingly, the above competitive ratios for ARP and ARPRate
are exactly the same as the optimal competitive ratio for k-min
search problem (see [45, Theorem 2]), when k → ∞. However,
OLIM involves additional uncertainty about demand as compared
to [45] and includes an inventory management constraint that is
not present in [45]. Thus, these competitive ratios are optimal for
OLIM. For illustrative purposes, Figure 1 depicts the value of the
optimal competitive ratio α as a function of price fluctuation ratio
θ , as compared to a sub-optimal competitive ratio of

√
θ achieved

in [23] in a slightly different setting, and logθ as a baseline.
To illustrate the performance of ARP and ARPRate outside of the

worst-case setting, we also perform a case study centered on our
motivating example: energy storage management. More specifi-
cally, we evaluate our algorithms using data traces of electricity
prices from several electricity markets (CAISO [19], NYISO [49],
ERCOT [27], DE Market [28]), energy demands from multiple data
centers of Akamai’s CDN [48], and renewable energy production
from solar [25] and wind installations [1, 5]. This case study shows
that ARP and ARPRate provide significant improvements compared
to state-of-the-art solutions. Specifically, in a broad set of repre-
sentative scenarios that include different seasons and locations,
we show that ARP achieves a cost reduction of 15% in comparison
with using no energy storage at all, establishing the value of batter-
ies for energy procurement. Further, ARP achieves an energy cost
that is within 21–23% of the theoretically smallest achievable cost
in an offline setting. In addition, ARP outperforms state-of-the-art
algorithms for energy procurement by 7.5–10%. Finally, ARPRate
outperforms all the alternatives in our experiments.

2 PRELIMINARIES

In this section, we present the system model and formulate the
problem. The interpretation of the model is illustrated using the
cases study of storage-assisted energy procurement.

We assume that the time-slotted model in which the time horizon
is divided into T slots, indexed by t , each with fixed length, e.g., 5
minutes in California ISO (CAISO) and New York ISO (NYISO) [7].
We consider the following scenario. At each slot, a demand d(t)
arrives online that must be satisfied from either the market with
the real-time price p(t) or from the local inventory, e.g., the energy
storage system. The decision maker can purchase excess from the
market in order to store in the inventory for future use. The goal
is to design an algorithm to determine the value of x(t), i.e., the
procurement amount in each slot, so that the aggregate cost of

Online Linear Optimization with
Inventory Management Constraints Sigmetrics ’20, June 8–12, 2020, Boston, MA

purchases over the time horizon is minimized and the demand is
satisfied.

2.1 Inventory Management Constraints

A key piece of the model is the constraints that define the evolution
of the inventory. Let B, ρc , and ρd be the capacity, the maximum
input rate, and the maximum output rate of the inventory. Let
b(t) ∈ [0,B] be the inventory level at the end of slot t that represents
the amount of assets that are already in the inventory. The evolution
of the inventory level is then given by

b(t) = b(t − 1) + x(t) − d(t), (3)

which states that the amount of assets in the inventory at the end
of each round is equal to the previous value b(t − 1) and the current
procurement amount x(t) subtracted by the demand d(t). Further,
we have two constraints on the value of x(t):

x(t) ≥ d(t) −min
{
ρd ,b(t − 1)

}
, (4)

which captures the maximum output rate from the inventory and
ensures covering the demand, and

x(t) ≤ d(t) +min
{
ρc ,B − b(t − 1)

}
, (5)

which captures the input rate constraint to the inventory. Finally,
we have the following inventory capacity constraint:

0 ≤ b(t) ≤ B.

In the example of energy storage, the rate constraints ρc and ρd
are the charge and discharge rate of the energy storage systems.
Several examples of actual values of ρc and ρd for different energy
storage technologies, e.g., lead-acid and lithium-ion batteries, and
compressed air energy storage are provided in §4.4.

2.2 Problem Formulation

We can now summarize the full formulation of online linear opti-
mization with inventory management (OLIM). When the demands
and market prices are known for the entire time horizon in advance,
the offline version of OLIM can be formulated a linear program as
follows:

OLIM : min
∑
t ∈T

p(t)x(t)

s.t. : ∀t ∈ T :
x(t) ≥ d(t) −min

{
ρd ,b(t − 1)

}
, (6)

x(t) ≤ d(t) +min
{
ρc ,B − b(t − 1)

}
, (7)

b(t) = b(t − 1) + x(t) − d(t), (8)
0 ≤ b(t) ≤ B, (9)

vars. : x(t) ∈ R+.

In this problem, the objective is tominimize the procurement cost
from the market. Constraints (6)-(7) ensure covering the demand
and rate limits. Constraint (8) dictates the evolution of the inventory,
and (9) enforces the capacity of the inventory.

Since OLIM is a linear program it can be solved efficiently in
an offline manner. In this work, however, we are interested in
developing online algorithms for OLIM that make decisions in each
time t , knowing the past and current prices and demands, but
not knowing those same inputs for the future. The algorithmic

challenge is to procure assets from the market and store them in
the inventory, without knowing if such decisions will work out
favorably in the future.

The classical approach for evaluating online algorithms is com-
petitive analysis [17], where the goal is to design algorithms with
the smallest competitive ratio, that is, the cost ratio between the
online algorithm and an offline optimal algorithm that has access to
complete input sequence. In our work, we devise an online algorithm
that has provably the best competitive ratio for OLIM.

In the analysis of our algorithms, we assume that the values
of pmax and pmin, the maximum and minimum prices, are known
a priori by the algorithm. This assumption is reasonable because
these values can easily be predicted using historical data. Further,
it is known that obtaining positive results for problems like OLIM
requires this assumption, e.g., [26, 45, 47]. Define θ = pmax/pmin
as the price fluctuation ratio. This quantity appears in our main
results.

2.3 Related Algorithmic Problems

OLIM is a generalization of online linear optimization, a topic that
has received considerable attention over decades [8, 13, 24, 40, 50].
Beyond work on online linear optimization, OLIM is also related
to several classical algorithmic problems, including one-way trad-
ing [26], the secretary problem [14], and the k-search problem [45].
In all of these problems, the goal is to search for the optimum
given the online arrival of cost/price functions over time. However,
none of these other formulations include inventory management
constraints, which add considerable difficulty.

Perhaps the most closely related problem to OLIM is the min-
imization variant of k-search, known as the k-min search prob-
lem [45]. In this problem, a player wants to buy k ≥ 1 units of an
asset with the goal ofminimizing the cost. At any slot t = {1, . . . ,T },
the player is presented a price p(t), and must immediately decide
whether or not to buy some integer units of the asset given p(t).
By setting d(t) = 0, t ∈ {1, . . . ,T − 1} and d(T) = B and allowing
fractional purchase, OLIM degenerates to the k-min search problem.
Hence, OLIM is an extension of the continuous version of k-min
search problem. More insights about the connection between the
above problems and OLIM are given in §5.

The other category of problems most related to OLIM is online
linear programswith covering constraints [18]. The constraint (6) in
OLIM is in form of a covering constraint, and constraints (7) and (9)
could be represented as box constraints that limit the feasible values
of the optimization variables. All three constraints could be captured
in online linear programs with covering constraints. However, as
compared to [18], the inventorymanagement constraint (8) inOLIM
couples the covering constraints across different time slots, which
results in more challenging problem than existing online covering
linear programs.

2.4 A Case Study: Energy Storage Management

Our motivation for studying OLIM comes from energy storage
management. Energy storage management is a challenging issue
faced by large-scale energy customers such as data centers, univer-
sity campuses, and enterprise headquarters. In such scenarios, the
demand and price values are highly uncertain and unpredictable

Sigmetrics ’20, June 8–12, 2020, Boston, MA Submission #16

2 4 6 8 10 12 14 16 18 20 22 24

Time (hour)

0

50

100

150

200

P
ri
c
e

 (
$

/M
W

h
) NYISO - Aug 1, 2017 NYISO - Aug 2, 2017 NYISO - Aug 3, 2017

(a) NYISO

2 4 6 8 10 12 14 16 18 20 22 24

Time (hour)

20

25

30

35

40

45

P
ri
c
e

 (
$

/M
W

h
) DE - Aug 1, 2017 DE - Aug 2, 2017 DE - Aug 3, 2017

(b) German Electricity Market

Figure 2: The energy price dynamics in NYISO and German

Electricity Market in three consecutive days in August 2017

and local energy storage is used to hedge the risk associated with
fluctuations.

More specifically, electricity pricing for large customers like data
centers is moving toward real-time pricing, and real-time prices can
change dynamically over time [23, 35, 39, 56, 57]. Two examples of
real-time energy prices in NYISO and German Electricity Market
are demonstrated in Figure 2. By comparing the price dynamics in
these two markets, we see that, while the prices in NYISO fluctuate
dramatically without any regular pattern, in German Market there
is a regular daily pattern with low price fluctuations.3

Not only due prices fluctuate dramatically, the energy demand of
large-scale energy consumers is highly unpredictable. For example,
in data centers, the user demand for internet services is extremely
variable, leading to high variability in the load of data centers.
Further, the sophisticated optimization algorithms used to improve
the energy efficiency of data center’s internal operations [29] can
further increase the unpredictable variability of the energy demand.

In addition to price fluctuations and demand variability, many
large-scale energy consumers are equipped with on-site renewable
sources, e.g., Google’s data center in Belgium [4]. The energy pro-
duction level of renewable sources is uncertain and intermittent.
For instance, energy production from solar panels can change in
a matter of minutes due to cloud cover moving in to obscure the
sun. This leads to an increased uncertainty in net energy demand
of data center.

All these factors lead to the importance of energy storage man-
agement in large-scale customers such as data centers. However,
the management of such systems is challenging.

3 OPTIMAL ONLINE ALGORITHMS

In this section, we present our main technical results. In §3.1, we
propose ARP, an online algorithm forOLIMwithout rate constraints.
Then, in §3.2, we prove that ARP achieves the optimal competitive
ratio in this context. Based on the insights from the design of ARP, in
§3.3 we propose ARPRate, which tackles the general OLIM problem

3Note that, in practice there is another cost model for the electricity bill of data centers
that includes a hybrid cost of volume and peak pricing [59, 62], however we focus on
volume pricing and leaves peak pricing as future work.

0 1 2 3 4 5 6 7

Time (day)

0

30

60

90

120

150

180

210

240

E
n

e
rg

y
 D

e
m

a
n

d
 (

k
W

h
) NEWYORK LOSANGELES DALLAS

(a) United States

0 1 2 3 4 5 6 7

Time (day)

0

30

60

90

120

150

180

210

240

E
n
e

rg
y
 D

e
m

a
n

d
 (

k
W

h
) LOSANGELES WIND NET

(b) Net energy demand with wind

Figure 3: Data center energy demand in different locations

with rate constraints. Finally, we prove that ARPRate achieves the
optimal competitive ratio in this context.

3.1 ARP: Adaptive Reservation Price

We begin by considering the case where the inventory has only
capacity constraints, but no rate constraints, i.e., ρc = ρd = B. In
this case we can rewrite constraint (6) as x(t) ≥ d(t) −b(t − 1), and
remove constraint (7).

3.1.1 The Design of ARP. The high-level goal of algorithms for
OLIM is to store the asset when the market price is cheap and use
the stored asset when the price is expensive. However, the dynamics
of the prices and demand make this challenging. The main ideas
ARP uses to accomplish this are: (i) adaptive reservation based on
inventory utilization, which tackles the challenges due to price
dynamics; and (ii) the construction of virtual inventories, which
tackle the challenges due to demand dynamics. We discuss each of
these in turn in the following.

Adaptive Reservation Price: ARP deals with price dynamics by
defining a notion of reservation price. Having a properly constructed
reservation price, ARP stores the asset if the current price is cheaper
than the reservation price; otherwise, it releases the asset from the
inventory. ARP adaptively determines the reservation price based on
the available inventory space. Intuitively, once the inventory level
is low, it is more eager to store assets; hence, it accepts higher prices.
On the other hand, at high inventory utilization, it stores the asset
only if the price is low. This is different from the fixed reservation
design introduced in [23] that determines the reservation prices
without considering the current inventory utilization.

Virtual Inventory: ARP deals with demand dynamics by defining
a notion of virtual inventory. ARP views the demand in each time
slot as an asset that must be purchased from the market with some
degree of freedom obtained by shifting it using the inventory. To
utilize this opportunity, ARP constructs several virtual inventories to
record the satisfied amount of the demand from the market. Specif-
ically, in each slot with d(t) > 0, ARP initiates a virtual inventory
whose capacity is equal to the demand and is initially empty.

The Details of ARP. The full detail of ARP is provided via pseu-
docode in Algorithm 1. Note that we assume that the initial inven-
tory level is zero, i.e., b(1) = 0 and, for notational convenience, we
represent the physical inventory as the first virtual inventory, de-
fine B1 = B as its capacity (Line 2), and v as the current number of
virtual inventories given positive demand. (Line 6 indicates creating
a new virtual inventory for the current slot and Line 14 renews the

Online Linear Optimization with
Inventory Management Constraints Sigmetrics ’20, June 8–12, 2020, Boston, MA

Algorithm 1 The ARP algorithm for each t ∈ T

1: // Initialization: at t = 1
2: B1 ← B;
3: v ← 1;
4: ξ1 ← [pmax/α];

// The main algorithm for t
5: if d(t) > 0 then
6: v ← v + 1
7: Bv ← d(t)
8: ξv ← pmax/α
9: end if

10: xi (t) ← [GBi (p(t)) −GBi (ξi)]
+, ∀1 ≤ i ≤ v

11: ξi ← min{p(t), ξi }, ∀1 ≤ i ≤ v
12: x(t) ← max

{∑v
i=1 xi (t), [d(t) − b(t − 1)]

+
}

13: b(t) ← b(t − 1) + x(t) − d(t)
// Renew virtual inventories

14: if b(t) = 0 then v ← 1; ξ1 ← pmax/α ;

virtual inventories). Let Bi be the capacity of i-th virtual inventory
and Bv = d(t), i.e., we set the value of new virtual inventory to
the current demand. Let ξi be the reservation price associated to
the virtual inventory i with initial value of pmax/α , where α > 0
is a parameter that is carefully chosen based on the competitive
analysis.

The cornerstone of ARP is in Line 10, where the procurement
amount for each virtual inventory, i.e., xi (t), is set. ARP defines
GBi (ξi) as the reservation function to determine the amount of
asset to be stored in the i-th virtual inventory in each slot. This
function represents the target amount of stored assets in i-th virtual
inventory when the reservation price is ξi . In slot t , ARP stores an
additional amount ofGBi (p(t)) −GBi (ξi) into virtual inventory i if
the current price, p(t), is less than ξi ; otherwise, it stores nothing.
Both situations can be stated in the following compact form

xi (t) =
[
GBi (p(t)) −GBi (ξi)

]+
. (10)

In this way, ARP logically allocates xi (t) units of asset to inventory i
(Line 10), and the reservation price will be updated tomin{ξi ,p(t)}
(Line 11). In other words, ξi records the minimum seen price during
the lifetime of i-th virtual inventory.

ARP designs functionGBi (p) so that it achieves the optimal com-
petitive ratio. To accomplish this, we choose the following function:

GBi (p) = αBi ln
[(
1 −

p

pmax

)
α

α − 1

]
, p ∈

[
pmin,

pmax
α

]
, (11)

where

α =

(
W

(
−

θ − 1
θ exp(1)

)
+ 1

)−1
, (12)

andW denotes Lembert-W function defined as inverse of f (z) =
z exp(z), and θ = pmax/pmin is the price fluctuation ratio. Note
that this function is carefully designed to guarantee a worst-case
competitive ratio for the problem and is based on the threshold
function defined in [45] for the k-min search problem. More details
and intuition are given in [45, Lemma 3].

Figure 4 depicts functionGBi (p) ∈ [0,Bi], andp ∈ [pmin,pmax/α]
as a decreasing function. It also demonstrates how to determine the
reservation amount for virtual inventory i . Further, when the price

Figure 4: An illustration of functionGBi (p) and determining

xi (t) as the procurement amount for virtual inventory i

p is larger than and equal to pmax/α ,GBi (p) = 0. When the price is
equal topmin, the reservation amount is equal toαBi ln

[(
1 − 1

θ

)
α

α−1

]
.

By substituting the value ofα fromEquation (12), we haveGBi (pmin) =
Bi , which means when the price is minimum, ARP stores the full
capacity of the inventory.

The last step is to determine the aggregate procurement quantity
x(t) (Line 12). To satisfy the demand constraint, i.e., x(t) ≥ d(t) −
b(t − 1), we calculate x(t) as follows

x(t) = max

{ v∑
i=1

xi (t),d(t) − b(t − 1)

}
. (13)

When
∑v
i=1 xi (t) < d(t) − b(t), ARP discharges the physical inven-

tory completely to meet the demand, hence, we have b(t) = 0. In
this case, we renew all virtual inventories to the initial state of
having only the physical inventory (Line 14). The intuition is that
with fully discharging the physical inventory, we exhausted the
capability of shifting the demand using the inventory, hence we
renew the process.

3.2 Analysis of ARP
This section proves our main result for ARP, Theorem 1. However,
before the main proof on competitiveness of the algorithm, we start
our analysis by showing that ARP is a valid algorithm for OLIM, i.e.,
that ARP produces a feasible solution.

Theorem 3. ARP generates a feasible solution to OLIM.

The proof that ARP covers the demand is straightforward be-
cause of Equation (13). The range of functionGBi (p) along with the
renewal process in Line 14 guarantees that the capacity constraint
of physical inventory is respected. The proof is formally given in
Appendix A.

To prove the competitiveness result, after some preliminaries
(§3.2.1), we characterize an upper bound on the cost of ARP (Lemma 1).
Thenwe construct a a lower bound on the offline optimum (Lemma 2).
Finally, we prove the theorem by comparing these two values. We
end by showing the optimality of the competitive ratio in §3.2.3.

3.2.1 Preliminaries. We begin with a few definitions. Note that
for notational brevity, we slightly abuse the notations by dropping
index t in the analysis.

Definition 1. Define ω ∈ Ω as an input instance to OLIM in-
cluding the price and demand, i.e.,

ω
def
= [ω(t) = ⟨p(t),d(t)⟩]t ∈T .

Sigmetrics ’20, June 8–12, 2020, Boston, MA Submission #16

Moreover, costω (ARP) is the cost of ARP under instanceω and costω (OPT)
is the offline optimal cost under ω. We drop subscript ω from the costs
when we are not focusing on a particular ω.

Definition 2. ARP is α-competitive, if for any ω ∈ Ω

costω (ARP) ≤ α · costω (OPT) + cons, (14)

where cons ≥ 0 is a constant number.

Definition 3. Reservation and idle periods. The time horizon
T can be divided into two type of periods: the reservation period,
which contains the interval between beginning to charge and fully
discharging of the inventory; and the idle period, which corresponds
to the interval that lies between two adjacent reservation periods.

Additionally, we use the following notation in the proof that
follows. Consider an instance in which ARP results in n reserva-
tion periods. During the i-th reservation period, i ≤ n, we assume
there are v̂i virtual inventory units created. Let ξ̂i, j be the final
reservation price of the j-th virtual inventory during the i-th reser-
vation period. Let Bi, j be the capacity of the j-th inventory and
b̂i, j be the final inventory level correspondingly. Obviously, we
have b̂i, j = GBi, j (ξ̂i, j). Let D be the total demand during the time
horizon, i.e., D =

∑
t ∈T d(t), and b̂ be the final inventory level of

the physical inventory, i.e., b̂ = b(T). In addition, let Fi (β) be the
minimum cost of purchasing β units of asset during i-th reservation
period, and p̃ be the minimum price during the idle periods. Finally,
the inverse of function GBi is defined as

G−1Bi (b) = pmax

[
1 −

(
1 −

1
α

)
exp

(
b

αBi

)]
, b ∈ [0,Bi]. (15)

3.2.2 Proof of Theorem 1. The proofs of all lemmas in this section
are given in Appendix B. We begin by characterizing an upper
bound on the cost of ARP.

Lemma 1. cost(ARP) is upper bounded by

cost(ARP) ≤
n∑
i=1

v̂i∑
j=1

∫ b̂i, j

0
G−1Bi, j (b)db +

©«D −
n∑
i=1

v̂i∑
j=1

b̂i, j + b̂
ª®¬pmax.

The key idea of the proof is to explicitly characterize the worst-
case cost of the online algorithm using the threshold function in
Equation (1). The details are given in Appendix B.

The next lemma provides a lower bound on the cost of offline
optimal solution.

Lemma 2. cost(OPT) is lower bounded by

cost(OPT) ≥
n∑
i=1

Fi (βi) +

(
D −

n∑
i=1

βi

)
p̃.

Using the previous lemmas, we now proceed to prove the compet-
itive ratio. First, we consider the simple case, where D = 0. In this
trivial case, cost(OPT) = 0, that of ARP is at most Bpmax. Obviously,
ARP is α-competitive since it satisfies the definition of competitive
ratio in Equation (14) by setting cons = Bpmax.

Second, we focus on the more general case in which D > 0. If
the minimum price during the time horizon is larger than or equal
to pmax/α , the cost of ARP is at most pmax(B +D) and that of OPT is

lower bounded by pmax
α D. It is easy to see that ARP is α-competitive

according to the definition. We only consider the case where the
minimum price during the time horizon is less than pmax/α , and
obviously, the minimum price occurs in the reservation period. We
have

∑n
i=1 Fi (βi) > 0. Using the results in Lemmas 1 and 2 we have

cost(ARP) − b̂pmax
cost(OPT)

≤

n∑
i=1

v̂i∑
j=1

∫ b̂i, j
0 G−1Bi, j (b)db +

(
D −

n∑
i=1

v̂i∑
j=1

b̂i, j

)
· pmax

n∑
i=1

Fi (βi) +

(
D −

n∑
i=1

βi

)
· p̃

=

Q +

(
n∑
i=1

βi −
n∑
i=1

v̂i∑
j=1

b̂i, j

)
pmax +

(
D −

n∑
i=1

βi

)
· pmax

n∑
i=1

Fi (βi) +

(
D −

n∑
i=1

βi

)
· p̃

≤max

Q +

(
n∑
i=1

βi −
n∑
i=1

v̂i∑
j=1

b̂i, j

)
pmax

n∑
i=1

Fi (βi)

,

(
D −

n∑
i=1

βi

)
· pmax(

D −
n∑
i=1

βi

)
· p̃

≤max

Q +

(
n∑
i=1

βi −
n∑
i=1

v̂i∑
j=1

b̂i, j

)
· pmax

n∑
i=1

Fi (βi)

,α

.

(16)

where

Q =

n∑
i=1

v̂i∑
j=1

∫ b̂i, j

0
G−1Bi, j (b)db .

In Equation (16), the first inequality is by Lemma 1 and 2, the

second inequality is by D −
n∑
i=1

βi ≥ 0 and the third inequality is

by pmax/p̃ ≤ α .
The following two lemmas provide an upper bound for Equa-

tion (16), which is the main step in proving the competitive ratio.

Lemma 3. Given G−1Bi, j (b̂i, j), i ∈ {0, 1, . . . ,n} in Equation (15),
we have

∫ b̂i, j
0 G−1Bi, j (b)db + (Bi, j − b̂i, j)pmax

ξ̂i, jBi, j
= α , ∀ b̂i, j ∈ [0,Bi, j]. (17)

Online Linear Optimization with
Inventory Management Constraints Sigmetrics ’20, June 8–12, 2020, Boston, MA

Proof. By substituting Equation (15), we first calculate the sec-
ond term in numerator of Equation (17) as follows∫ b̂i, j

b=0
G−1Bi, j (b)db

=pmax

[
b −

(
1 −

1
α

)
exp

(
b

αBi, j

)
αBi, j

] �����b̂i, j
b=0

=pmax

[
b̂i, j −

(
1 −

1
α

)
exp

(
b̂i, j

αBi, j

)
αBi, j

]
+ pmax

(
1 −

1
α

)
αBi, j .

Then, we calculate the numerator

(Bi, j − b̂i, j)pmax +

∫ b̂i, j

b=0
G−1Bi, j (b)db

= αBi, j

(
pmax

[
1 −

(
1 −

1
α

)
exp

(
b̂i, j

αBi, j

)])
= αBi, jG

−1
Bi, j (b̂i, j). (18)

Substituting (18) into (17) completes the proof. □

Using the result in Lemma 3, we have the following result.

Lemma 4.
n∑
i=1

v̂i∑
j=1

∫ b̂i, j
0 G−1Bi, j (b)db +

(
n∑
i=1

βi −
n∑
i=1

v̂i∑
j=1

b̂i, j

)
pmax

n∑
i=1

Fi (βi)

≤ α .

Proof. We prove the result in Lemma 4 by contradiction. As-
sume

n∑
i=1

v̂i∑
j=1

∫ b̂i, j
0 G−1Bi, j (b)db +

(
n∑
i=1

βi −
n∑
i=1

v̂i∑
j=1

b̂i, j

)
pmax

n∑
i=1

Fi (βi)

> α .

By statement (3) in Lemma 6, we have

Q +

(
n∑
i=1

v̂i∑
j=1

Bi, j −
n∑
i=1

v̂i∑
j=1

b̂i, j

)
pmax

n∑
i=1

Fi

(
v̂i∑
j=1

Bi, j

)

=

Q +

(
n∑
i=1

v̂i∑
j=1

βi, j −
n∑
i=1

v̂i∑
j=1

b̂i, j

)
pmax +

n∑
i=1

v̂i∑
j=1
(Bi, j − βi, j)pmax

n∑
i=1

Fi

(
v̂i∑
j=1

βi, j

)
+

n∑
i=1

[
Fi

(
v̂i∑
j=1

Bi, j

)
− Fi

(
v̂i∑
j=1

βi, j

)]

≥

Q +

(
n∑
i=1

v̂i∑
j=1

βi, j −
n∑
i=1

v̂i∑
j=1

b̂i, j

)
pmax +

n∑
i=1

v̂i∑
j=1
(Bi, j − βi, j)pmax

n∑
i=1

Fi

(
v̂i∑
j=1

βi, j

)
+

n∑
i=1

v̂i∑
j=1
(Bi, j − βi, j)

pmax
α

>α .

During the lifetime of the j-th virtual inventory of the i-th reser-
vation period, the minimum electricity price is ξ̂i, j . When the pro-
curement amount during the i-th reservation period is

∑v̂i
j=1 Bi, j ,

the cost of the optimal algorithm satisfies
n∑
i=1

Fi
©«
v̂i∑
j=1

Bi, j
ª®¬ ≥

n∑
i=1

v̂i∑
j=1

ξ̂i, jBi, j .

Thus, we have
n∑
i=1

v̂i∑
j=1

∫ b̂i, j
0 G−1Bi, j (b)db +

(
n∑
i=1

v̂i∑
j=1

Bi, j −
n∑
i=1

v̂i∑
j=1

b̂i, j

)
pmax

n∑
i=1

v̂i∑
j=1

ξ̂i, jBi, j

=

n∑
i=1

v̂i∑
j=1

[∫ b̂i, j
0 G−1Bi, j (b)db +

(
Bi, j − b̂i, j

)
pmax

]
n∑
i=1

v̂i∑
j=1

ξ̂i, jBi, j

> α .

That means that there is at least a pair of i and j such that∫ b̂i, j
0 G−1Bi, j (b)db + (Bi, j − b̂i, j)pmax

ξ̂i, jBi, j
> α .

The above equation contradicts the results in Lemma 3. This com-
pletes the proof. □

Using the result in Lemma 4 and Equation (16), we have

n∑
i=1

v̂i∑
j=1

∫ b̂i, j
0 G−1Bi, j (b)db +

(
D −

n∑
i=1

v̂i∑
j=1

b̂i, j

)
pmax

n∑
i=1

Fi (βi) +

(
D −

n∑
i=1

βi

)
· p̃

≤ α .

Thus, we have

cost(ARP) ≤ α · cost(OPT) + b̂pmax ≤ α · cost(OPT) + Bpmax,

where Bpmax is a constant. And the proof of Theorem 1 is complete.

3.2.3 The Optimality of the Competitive Ratio. Finally, we conclude
this section by arguing that the competitive ratio proven in the
previous subsection is optimal among online algorithms. To see
this, set d(t) = 0, t ∈ {1, . . . ,T − 1} and d(T) = B. In this case,
OLIM degenerates into the k-min search problem, whose optimal
competitive ratio [45, Theorem 2] is exactly equal to that of ARP.
Thus α is a lower bound for the OLIM, since it is a generalization
of the k-min search problem.

3.3 ARPRate: Incorporating Rate Constraints

In this section, we build on the design of ARP and develop ARPRate,
which can additionally handle input and output rate constraints.
Algorithm 2 provides the pseudocode of ARPRate. While the general
flow of the algorithms are similar, ARPRate includes two new ideas.

First, ARPRate intelligently sets the capacity of the virtual inven-
tories to respect the output rate constraints. The high-level intuition
for doing this is that the output (discharge) rate constraint limits
the capability of using the inventory in each slot. Hence, it may not
be possible to fully satisfy the demand by discharging the inventory.

Sigmetrics ’20, June 8–12, 2020, Boston, MA Submission #16

Algorithm 2 The ARPRate algorithm for each t ∈ T

1: // Initialization: just at first slot
2: B1 ← B; v ← 1; ξ1 ← pmax/α
3: if d(t) > 0 then
4: v ← v + 1
5: ξv ← pmax/α
6: Bv ← InitVS (p(t),d(t), ρd ,v, {ξi ,Bi }i=1:v−1, ε1)
7: end if

8: x̂(t) ←
∑v
i=1

[
GBi (p(t)) −GBi (ξi)

]+
9: x(t) ← x̂(t)
10: p ← p(t)
11: if x̂(t) < [d(t) −min{b(t − 1), ρd }]+ then
12: x(t) ← [d(t) −min{b(t − 1), ρd }]+
13: end if

14: if x̂(t) > ρc + d(t) then
15: x(t) ← ρc + d(t)
16: p ← CalRP (d(t), ρc ,v, {ξi ,Bi }i=1:v , ε2)
17: end if

18: b(t) ← b(t − 1) + x(t) − d(t)
19: ξi ← min{p, ξi }, ∀1 ≤ i ≤ v
20: if b(t) = 0 then v ← 1 and ξ1 ← pmax/α

Algorithm 3 InitVS (p(t),d(t), ρd ,v, {ξi ,Bi }i=1:v−1, ε1)

1: Bv ← 0, B′v ← d(t)
2: while |B′v − Bv | > ε1 do
3: Bv ← B′v
4: x̂(t) ←

∑v
i=1

[
GBi (p(t)) −GBi (ξi)

]+
5: B′v ← d(t) − [d(t) − ρd − x̂(t)]

+

6: end while

7: Output: Bv

So, creating a virtual inventory with capacity equal to the demand
does not make sense. This is done by calling sub-procedure InitVS
in Line 6 of ARPRate, with details explained in §3.3.1.

Second, ARPRate intelligently sets the value of the reservation
prices to respect the input (charge) rate constraints. The high-level
intuition for how to do this is that the input rate constraint limits
the amount of stored asset in each slot. Hence, if the price is very
cheap, ARP might propose to store some amount that is beyond
the capability of inventory to input. Instead, ARPRate updates the
reservation price based on the capability to store, i.e., input rate
constraint. This is done by calling the sub-procedure CalRP in
Line 16 of ARPRate, with details presented in §3.3.2.

3.3.1 Initializing the New Virtual Inventory. At t , the preferred pro-
curement amount, denoted as x̂(t), should be calculated as

x̂(t) =
v∑
i=1

[
GBi (p(t)) −GBi (ξi)

]+
, (19)

where Bv is the new capacity of virtual inventory. Instead of the
way that ARP sets the capacity to d(t), ARPRate subtracts [d(t) −
ρd −x̂(t)]

+, i.e., the additional amount due to output rate constraint,
from the capacity. Hence,

Bv = d(t) − [d(t) − ρd − x̂(t)]
+. (20)

Algorithm 4 CalRP (d(t), ρc ,v, {ξi ,Bi }i=1:v , ε2)

1: p ← pmin, p′ ← pmax/α ;
2: while |p′ − p | > ε2 do
3: z ←

∑v
i=1

[
GBi ((p + p

′)/2) −GBi (ξi)
]+

4: if z > ρc + d(t) then p ← (p + p′)/2 else p′ ← (p + p′)/2
5: end while

6: Output: p

Equations (19) and (20) show that Bv and x̂(t) are dependent on
each other. To address this, we devise the sub-procedure InitVS
(Algorithm 3) to calculate the capacity of the new virtual inventory.
InitVS captures this dependency and updates determining Bv and
x(t) using a simple search algorithm in iterative manner with pa-
rameter ε1 as the stopping criteria (ε1 can be arbitrarily close to 0).
In Appendix C, we prove that InitVS converges to a solution of
Equations (19) and (20). Lines 9-17 of ARPRate calculates x(t) by
taking into account rate constraints in the following cases:

(1) Inactive output and input rate, Line 9. In this case, [d(t) −
min{b(t − 1), ρd }]+ ≤ x̂(t) ≤ ρc + d(t), hence, x(t) = x̂(t).

(2) Active output rate constraint, Line 11. In this case, x̂(t) fails
to satisfy the demand, so we set the actual procurement amount
x(t) = [d(t) −min{b(t − 1), ρd }]+.

(3) Active input rate constraint, Line 17. In this case, x̂(t) will be
beyond the input rate of inventory, hence x(t) = ρc + d(t).

3.3.2 Calculating the Reservation Price. The final step is to update
the reservation price ξi for each virtual inventory. For cases (1)
and (2), the reservation price for each virtual inventory is updated
similar to that of ARP, i.e., min{ξi ,p(t)} (Lines 10 and 19). For case
(3), ξi is updated as follows. Let p be the updated reservation price,
whose value is the solution to the following equation

vt∑
i=1

[
GBi (p) −GBi (ξi)

]+
= ρc + d(t).

ARPRate solves the above equation for p by calling the sub-
procedure CalRP (Algorithm 4) in iterative manner, with parameter
ε2 as the stopping criteria (ε2 can be arbitrarily close to 0).

3.3.3 Proof of Theorem 2. We end this section by outlining the
proof of Theorem 2. The full details are given in Appendix D, and
here we simply give an overview of the main steps in the proof.

Much of the argument proceeds similarly to that for ARP. In
particular, the lower bounds are the same. The key new piece is to
prove an upper bound for ARPRate similar to that of in Lemma 1.
To do this, we first show that, in worst case, the output rate is not
active. This simplifies the analysis and means that the upper bound
is only impacted by input rate constraints. More specifically, we
prove the following upper bound in the appendix. Denote x(t) and
x∗(t) as the amount of reserved asset by the online algorithm and
the offline algorithm at time slot t , respectively.

Lemma 5. The cost of ARPRate is upper bounded by

Q +
©«D −

n∑
i=1

v̂i∑
j=1

b̂i, j + b̂
ª®¬ · pmax −

∑
t ∈Tr

µ(t)x(t),

where Q =
n∑
i=1

v̂i∑
j=1

∫ b̂i, j
0 G−1Bi, j (b)db.

Online Linear Optimization with
Inventory Management Constraints Sigmetrics ’20, June 8–12, 2020, Boston, MA

4 A CASE STUDY

To illustrate the performance improvements that result from the
optimal online algorithms developed in this paper, we end with
a case study illustrating the use of ARP and ARPRate in the con-
text of energy storage management by a data center. These results
highlight the average-case performance in a real-world scenario,
as opposed to the worst-case performance results in Theorems 1
and 2. Our results address the following questions:

(i) How does the empirical cost ratio of ARP compare to the theoreti-
cal competitive ratio? We find that ARP achieves a significantly
smaller average cost ratio than the worst-case competitive
ratio guarantee provided by our theoretical analysis (Observa-
tion 1).

(ii) How does ARP compare to existing algorithms? We find that ARP
outperforms all the baseline and existing algorithms [23, 35,
56] by 7%-15%, on average.

(iii) How sensitive is ARP to various parameters such as the penetra-
tion of renewable energy? Our experiments demonstrate that
ARP is minimally affected by these parameters as compared to
substantial performance fluctuations in alternative algorithms
(Observations 4).

(iv) How does ARPRate compare to the ARP? We find that the em-
pirical cost ratio of ARPRate is only slightly worse than ARP
when rate constraints are tight (Observation 6).

4.1 Experimental Setup

In this subsection, we explain the data traces for data center en-
ergy demand, energy prices, and renewable generation used in the
experiments.

Data Center Energy Demand: We use a repository of demand
traces from Akamai’s server clusters in several data centers col-
lected during a 31 day period from multiple locations around the
world. The data includes the server load information from 973 data
centers in 102 countries, collected every 5 minutes. To calculate
energy consumption as a function of load, we use the standard
linear model [15]. Let didle and dpeak be the energy consumptions
by an idle and a fully utilized server, respectively. Then, the energy
(in kWh) consumed by a server serving normalized load l ∈ [0, 1]
is d(l) = didle + (dpeak − didle) × l . In our experiments, we use
didle = 100kWh, and dpeak = 250kWh, representing energy pro-
portionality factor, i.e., defined as (dpeak − didle)/dpeak, of 0.6 [51].
We report the results of different algorithms for a selection of data
centers in the four different cities: Los Angeles, New York, Dallas,
Frankfurt. A representative 7-days snapshot of the energy consump-
tion is depicted in Figure 3.

Energy Prices:We use the electricity prices from a local electricity
market for each data center location, i.e., CAISO [19] for Los Ange-
les, NYISO [49] for New York, ERCOT [27] for Dallas, and German
Electricity Market (abbreviated as DE in results) for Frankfurt. Note
that FERC is forcing the U.S. electricity markets to transition to real-
time markets with 5-minutes settlement intervals [7]. Currently
CAISO and NYISO adapt this policy, and the rest are in the middle
of this transition. To have a common settlement interval for all
different markets, we set the length of each slot to 5 minutes, and
for those that the current real-time market comes with different

Winter Spring Summer Fall

0

50

100

150

200

P
ri
c
e
 f

lu
c
tu

a
ti
o

n
s
 (

)

(a) CAISO, high fluctuations

Winter Spring Summer Fall
0

20

40

60

P
ri
c
e
 f

lu
c
tu

a
ti
o

n
s
 (

)

(b) NYISO, high fluctuations

Winter Spring Summer Fall

0

20

40

60

80

P
ri
c
e
 f

lu
c
tu

a
ti
o
n
s
 (

)

(c) ERCOT, medium fluctuations

Winter Spring Summer Fall
0

10

20

30

40

50

P
ri
c
e
 f

lu
c
tu

a
ti
o
n
s
 (

)

(d) DE, low fluctuations

Figure 5: Price fluctuations in different seasons/locations

length (ERCOT with 15 minutes and DE with 1 hour intervals), we
down-sample the market price readings to 5 minutes.

Recall that the performance of our algorithm is a function of
parameter θ (see Equation (2)) as the price fluctuation ratio. Note
that different markets exhibit different price fluctuations in dif-
ferent seasons. In Figure 5, the box plots for different markets in
different seasons are shown. The results show that the fluctuations
in spot prices in CAISO (Figure 5(a)) and NYISO (Figure 5(b)) are
high, in ERCOT it is medium (Figure 5(c)), and in DE it is low
(Figure 5(d)). Consequently, to have a comprehensive experimental
study in different fluctuation patterns, we compare the performance
of different algorithms in different markets and different seasons.

Renewable Data Traces: We evaluate the results of different algo-
rithms in three different scenarios: (i) without any on-site renewable
supply, (ii) with 50% penetration on-site wind generation; and (iii)
with 50% penetration on-site solar generation. Note that with local
renewable supply, the net energy demand, i.e., the total demand
subtracted by the local renewable supply, must be procured from
the grid with real-time pricing. Since the renewable supply is un-
certain, the net demand in cases (ii) and (iii) is be more uncertain
(as depicted in Figure 3(b)).

We use the solar data from PVWatts [25] and obtain the hourly
solar radiation in different seasons. We match each data center
with solar readings from a location as close to it as possible. The
exact distance from data center to the location from where the
readings were obtained is show in Table 1. We scale the values so
that 50% of the total demand is satisfied by solar panels. We set the
parameters according to the default values [25, Table 2]. While the
spot prices and energy demand readings are 5-minutes, the solar
data is hourly. Hence, we make an assumption that the solar data is
almost constant during each hour and use the hourly values for each
5 minute slots. The wind traces for the U.S. locations are obtained
from [1], and for European location are obtained from OPSD [5].

Sigmetrics ’20, June 8–12, 2020, Boston, MA Submission #16

Table 1: Summary of data center locations, markets, and

nearby solar and wind power plants used in experiments

City Market Dist. from solar Dist. from wind

Los Angeles CAISO 80 mi. 48 mi.
New York NYISO 37 mi. 52 mi.
Dallas ERCOT 63 mi. 145 mi.

Frankfurt DE 35 mi. -

Table 2: Summary of algorithms that are evaluated

Our proposed online algorithms

ARP Basic online algorithm (§3.1)
ARPRate Online algorithm with rate constraints (§3.3)

PreDay
A simple data-driven approach to use optimal solution for the
previous day for the current day

Other algorithms for comparison

OPT Optimal offline solution with storage
NoSTR Optimal offline solution without storage

OnFix [23] State-of-the-art online algorithm with fixed threshold price
LypOpt [35] State-of-the-art online Lyapunov-based algorithm

A summary of locations, markets, and distances to renewables is
listed in Table 1.

4.2 Comparison Algorithms and Settings

We implemented our algorithms and several other state-of-the-art
algorithms for comparison as described below (see Table 2).

▷ (OPT) Optimal offline algorithm with storage by solving OLIM
in §2. Since OPT represents the best achievable cost for the given
inputs, all other algorithms are evaluated by computing empirical
cost ratio which is the ratio of the cost of the algorithm with the
cost of OPT. The cost ratio is always greater than equal to 1 and
lower the cost ratio of an algorithm, the better the performance.

▷ (NoSTR) A baseline scheme that simply satisfies the net energy
demand from the grid, assuming no storage is available. The cost
ratio of NoSTR quantifies the maximum benefit of having storage.

▷ (PreDay) Our data-driven approach that uses the optimal de-
rived for the previous day for the current day by projecting into a
feasible range (satisfying capacity, demand, and rate constraints).
PreDay is representative of a statistical approach that uses historical
statistics to inform future decisions.

▷ (OnFix) Existing sub-optimal online algorithm [23] is a simple
strategy that uses a fixed threshold of p = √pmax × pmin as the
purchasing threshold and fully charges the storage if the current
price is lower than p, otherwise, discharges the storage as much as
possible and purchases the remaining amount.

▷ (LypOpt) Lyapunov-based approach [35, 56] that uses Lya-
punov optimization to solve OLIM. Note that [35] considers load-
balancing among multiple data centers as well, and to have a fair
comparison, we focus on single data center model in [35], and with
this reduction both algorithms in [35, 56] become similar.

Unless otherwise mentioned, we set the length of each slot to
5 minutes, according to FERC rules. The time horizon is 1 day;
hence T = 12 × 24 = 288. We set the time horizon to 1 day to
potentially see the impact of daily patterns in PreDay. The capacity
of energy storage is set toC = 18×maxt ∈T d(t), sufficient to power
the data center for 1.5 hours at max net demand. In experiments

with renewable, the renewable penetration for solar and wind is
50%. Finally, each data point in figures and tables corresponds to
the average results of 30 runs (days) over a month, each with the
corresponding demand, renewable generation, and market prices.

4.3 Results for ARP
In Table 3, the empirical cost ratio of 5 algorithms (NoSTR, PreDay,
LypOpt, OnFix, and ARP) are reported across a broad set of set-
tings: (i) four different locations; (ii) four different seasons; (iii) and
with/without renewable. We report the notable observations:

Observation 1. ARP achieves a significantly smaller average cost
ratio than the worst-case competitive ratio guarantee provided by our
theoretical analysis. The average theoretical competitive ratio (α
in Equation (2)) for year-round experiments over four locations is
3.76, while the empirical cost ratios for ARP are much smaller, i.e.,
1.21 for no renewable and with solar, and 1.23 for wind.

Observation 2. ARP outperforms the alternative algorithms, when
averaged across the entire year and all four locations, andwith/without
renewables and it is close to offline optimal OPT. For example, in the
case with wind as the renewable source, the last row of Table 3
shows that ARP outperforms NoSTR by 15%, PreDay by 10%, LypOpt
by 8%, and OnFix by 7.5%. Further, on average over the whole year
ARP achieves a cost ratio of 1.21 to 1.23, i.e., a cost that is within
21–23% of the cost of OPT. However. there are a few settings that
other algorithms outperform ARP, e.g., PreDay in Frankfurt/DE. The
reason is investigated in the next observation.

Observation 3. PreDay is the best algorithm in settings with low
price uncertainty and recurring daily price patterns. To elaborate this
observation, we need to further investigate the dynamics of the
real-time prices in DE market. Figure 2 shows the real-time prices
in three days in August 2017 for NYISO with high fluctuation ratio
and DE Market with low price fluctuations. One can see that in DE
Market the prices do not fluctuate a lot and there is almost a regular
daily pattern. This regular daily pattern is the key to PreDay’s
good performance since it uses the previous day values to derive
the procurement plan for today. However, the irregular pattern in
NYISO and other markets (as shown in Figure 2) motivates our
general ARP approach, since relying on the past information or
stochastic modeling is less effective in these real-world markets.
Predictably, PreDay does not perform as well in CAISO and NYISO
markets in Table 2 (the cost ratio of 1.63 and 1.46 for PreDay as
compared to 1.35 and 1.31 for ARP).

Observation 4. With increased uncertainty due to renewable
penetration, the performance of ARP is robust, however, the perfor-
mance of PreDay degrades substantially. The performance of ARP
slightly degrades with injection of 50% renewable. The performance
of PreDay, however, degrades substantially (e.g., from 1.31 to 1.37
for wind). To further elaborate this, in Figure 6, we compare the
performance of ARP and PreDay in different seasons and locations
as the penetration level varies. The result signifies the robust perfor-
mance of ARP and degradation of PreDaywith increased renewable
penetration.

Observation 5. The seasonal and locational patterns result in
different degrees of uncertainty, thereby impact the performance of the

Online Linear Optimization with
Inventory Management Constraints Sigmetrics ’20, June 8–12, 2020, Boston, MA

Table 3: The empirical cost ratio of different algorithms in different markets and different seasons

Market θ α Cost ratio for no renewables Cost ratio for 50% wind penetration Cost ratio for 50% solar penetration

NoSTR PreDay LypOpt OnFix ARP NoSTR PreDay LypOpt OnFix ARP NoSTR PreDay LypOpt OnFix ARP

W
in
te
r

CAISO 110.00 7.74 1.88 1.60 1.79 1.53 1.44 2.06 2.13 1.74 1.68 1.51 1.93 1.67 1.71 1.56 1.44
NYISO 26.89 3.99 1.52 1.46 1.47 1.45 1.29 1.60 1.54 1.49 1.55 1.33 1.55 1.49 1.42 1.48 1.29
ERCOT 15.83 3.13 1.23 1.15 1.13 1.13 1.15 1.26 1.16 1.15 1.16 1.13 1.26 1.17 1.16 1.15 1.13

DE 2.22 1.36 1.11 1.03 1.10 1.09 1.07 1.13 1.04 1.12 1.10 1.08 1.11 1.03 1.10 1.09 1.07
Average 38.73 4.05 1.43 1.31 1.37 1.29 1.24 1.51 1.47 1.37 1.36 1.26 1.46 1.34 1.35 1.31 1.23

Sp
rin

g

CAISO 96.95 7.29 1.99 1.87 1.51 1.54 1.34 2.05 1.73 1.68 1.63 1.39 2.01 1.94 1.82 1.56 1.35
NYISO 28.79 4.11 1.54 1.42 1.47 1.44 1.33 1.58 1.45 1.49 1.49 1.34 1.57 1.45 1.52 1.49 1.34
ERCOT 10.09 2.56 1.27 1.17 1.22 1.15 1.15 1.33 1.21 1.27 1.19 1.17 1.29 1.16 1.20 1.17 1.14

DE 2.04 1.31 1.07 1.03 1.07 1.07 1.05 1.08 1.03 1.07 1.08 1.05 1.08 1.03 1.07 1.08 1.05
Average 34.47 3.81 1.47 1.37 1.32 1.30 1.22 1.51 1.35 1.38 1.34 1.24 1.49 1.39 1.40 1.32 1.22

Su
m
m
er

CAISO 25.10 3.86 1.56 1.36 1.51 1.41 1.32 1.56 1.37 1.51 1.42 1.33 1.60 1.39 1.54 1.44 1.34
NYISO 19.96 3.48 1.33 1.26 1.31 1.34 1.24 1.35 1.29 1.28 1.38 1.26 1.35 1.27 1.30 1.38 1.24
ERCOT 5.91 2.03 1.17 1.07 1.14 1.12 1.09 1.20 1.10 1.14 1.13 1.09 1.18 1.07 1.14 1.13 1.07

DE 2.31 1.37 1.08 1.03 1.08 1.07 1.06 1.09 1.04 1.09 1.08 1.06 1.09 1.03 1.08 1.08 1.07
Average 13.32 2.68 1.29 1.18 1.26 1.23 1.18 1.30 1.20 1.25 1.25 1.19 1.30 1.19 1.27 1.25 1.18

Fa
ll

CAISO 51.84 5.42 1.58 1.70 1.39 1.42 1.29 1.64 1.89 1.43 1.47 1.31 1.63 1.80 1.44 1.45 1.30
NYISO 36.04 4.57 1.71 1.71 1.67 1.61 1.40 1.81 1.77 1.75 1.75 1.43 1.74 1.72 1.64 1.65 1.40
ERCOT 7.26 2.22 1.22 1.12 1.20 1.13 1.08 1.23 1.15 1.16 1.14 1.09 1.23 1.12 1.16 1.13 1.08

DE 2.12 1.33 1.12 1.05 1.11 1.09 1.09 1.15 1.08 1.12 1.11 1.10 1.12 1.06 1.12 1.09 1.09
Average 24.31 3.38 1.41 1.40 1.34 1.31 1.21 1.46 1.47 1.36 1.36 1.23 1.43 1.43 1.34 1.33 1.22

Ye
ar

CAISO 70.97 6.28 1.75 1.63 1.55 1.47 1.35 1.83 1.78 1.59 1.55 1.39 1.79 1.70 1.63 1.50 1.36
NYISO 27.92 4.06 1.52 1.46 1.48 1.46 1.31 1.58 1.51 1.50 1.54 1.34 1.55 1.48 1.47 1.50 1.32
ERCOT 9.77 2.53 1.22 1.13 1.17 1.13 1.12 1.25 1.15 1.18 1.16 1.12 1.24 1.13 1.17 1.14 1.11

DE 2.17 1.34 1.09 1.04 1.09 1.08 1.07 1.11 1.05 1.10 1.09 1.07 1.10 1.04 1.09 1.08 1.07
Average 27.71 3.76 1.40 1.31 1.32 1.28 1.21 1.44 1.37 1.34 1.33 1.23 1.42 1.34 1.34 1.30 1.21

Table 4: Comparison of different algorithms using different energy storage technologies

Market θ Lithium-Ion (ρc /B = 0.35) Lead-Acid (ρc /B = 0.2) Compressed Air Energy Storage (ρc /B = 0.05)
NoSTR PreDay LypOpt OnFix ARPRate NoSTR PreDay LypOpt OnFix ARPRate NoSTR PreDay LypOpt OnFix ARPRate

CAISO 25.10 1.49 1.34 1.44 1.33 1.31 1.47 1.33 1.44 1.32 1.32 1.43 1.31 1.42 1.29 1.32
NYISO 19.96 1.27 1.21 1.24 1.24 1.21 1.25 1.19 1.22 1.22 1.20 1.23 1.17 1.20 1.19 1.18
ERCOT 7.26 1.14 1.10 1.11 1.13 1.07 1.14 1.10 1.13 1.13 1.07 1.13 1.09 1.13 1.12 1.07

DE 2.12 1.07 1.03 1.05 1.08 1.05 1.06 1.04 1.05 1.08 1.05 1.06 1.03 1.05 1.08 1.05
Average 13.32 1.24 1.17 1.21 1.19 1.16 1.23 1.16 1.21 1.18 1.16 1.21 1.15 1.20 1.17 1.15

algorithms substantially and increased uncertainty increases the cost
ratio of algorithms. For example, in ARP, the year-round cost ratio
in Los Angles as the most uncertain location (highest θ = 70.97, on
average) is 1.47, while the same value for Frankfurt (lowest θ = 2.17)
as the least uncertain one is 1.07. As for seasonal variations, ARP
achieves the cost ratio of 1.18 in the summer as the least uncertain
season (with average θ = 13.32), while this value is1.24 in the
winter as the most uncertain scenario (with θ = 38.73).

4.4 Results for ARPRate
To evaluate the performance of ARPRate, we consider identical
charging and discharge rates, i.e., ρc = ρd , and normalize it against
the storage capacity. Hence, we define ρ = ρc/B as a measure of the
rate at which an energy storage is charged/discharged relative to its
capacity. This measure is similar to C-rate and E-rate values in bat-
tery specifications [54]. The small values of ρ represent the energy
storage is slow in charge/discharge and large values represents fast
storages. A broad spectrum of energy storage technologies are inte-
grated in the operations of the data centers, each with a different ρ.
To obtain practical values, we use the energy density as the normal-
ized capacity, and power density as the normalized discharge rate
from [31]. We choose four common categories of storages in data

centers based on their ρ values [20, 58]: (1) Compressed Air Energy
Storage (CAES) with ρ ≈ 0.05; (2) Lead-Acid (LA) with ρ ≈ 0.2;
(3) Lithium-Ion (LI) with ρ ≈ 0.35, and (4) Flywheels ρ ≈ 1. For
Flywheels ρ = 1 which means that there is no rate constraints and
it reduces to ARP. Hence, in this experiment, we investigate the
performance of ARPRate for the first three technologies, and the
results are reported in Table 4.

Observation 6. The performance of ARPRate improves as ρ in-
creases, i.e., the rate constraints becomes more relax, while the per-
formance of PreDay exhibits no regular pattern. This observation is
inferred from the results Table 4 that reports the results for three
representative energy storage technologies.

5 RELATEDWORK

The problem studied in this paper generalizes a long history of
work focused on online linear optimization, e.g., [8, 13, 24, 40, 50],
and has intrinsic similarities to several other classic algorithmic
problems regarding online search, such as the time series search
problem [45], the one-way trading problem [26], the multiple-choice
secretary problem [10] and the online knapsack problem [16]. The

Sigmetrics ’20, June 8–12, 2020, Boston, MA Submission #16

20 30 40 50 60 70 80 90

Penetration Level (%)

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

E
m

p
ir
ic

a
l
C

o
s
t
R

a
ti
o

(a) New York

20 30 40 50 60 70 80 90

Penetration Level (%)

1.15

1.2

1.25

1.3

1.35

1.4

E
m

p
ir
ic

a
l
C

o
s
t
R

a
ti
o

(b) Dallas

20 30 40 50 60 70 80 90

Penetration Level (%)

1.06

1.08

1.1

1.12

1.14

1.16

E
m

p
ir
ic

a
l
C

o
s
t
R

a
ti
o

(c) Frankfurt

Figure 6: The impact of renewable penetration

most relevant problem is k-min search problem [45]. In this prob-
lem, a player wants to buy k ≥ 1 units of an asset with the goal
of minimizing the cost. At any slot t = {1, . . . ,T }, the player is
presented a price p(t), and must immediately decide whether or
not to buy one unit of the asset given p(t). In online setting, the
difficulty of above problems comes from the uncertainty of the
information for future time slots, for example, the market pricing
in k-min search problem.

The idea of using an adaptive pricing function that is used in
ARP is adapted from the optimal online algorithm design for k-min
search problem in [45] and QoS buffer management problem in [61].
However, different from k-min search problem, inOLIM, in addition
to the uncertainty in the market pricing, we have another source
of uncertainty due to online arrival of energy demand. In other
words, OLIM comes with two sets of uncertain input parameters,
which allow the adversary to have more options in constructing
the worst-case input. Therefore, direct application of existing algo-
rithms for k-min search problem can only guarantee sub-optimal
competitive ratios. We tackled the additional demand uncertainty
by introducing the novel notion of virtual inventories. With this
view, one can see that satisfying each net demand as an instance
of k-min search problem, where k is the energy demand and must
be purchased within the time horizon. Different from the k-min
search problem, where the k , as the amount of required commodity
is given a priori, ARP deals with online arrival of different com-
modities, i.e., demands in each slot. Moreover, different from [61],
which is a profit maximization problem, this paper studies a cost
minimization problem with more complicated set of constraints
due to rate limits of storage systems. Consequently, it comes with
different algorithms and proof techniques.

The idea of modeling energy storage management using search
problems is used in [22, 23]. However, [22, 23] adopt a fixed thresh-
olding policy, leading to suboptimal online algorithms with com-
petitive ratio of

√
θ . In contrast, this work leverages the adaptive

thersholding policy and is the first that effectively tackles the de-
mand uncertainty in OLIM by introducing the notion of virtual
inventories, and develops online algorithms that achieve the op-
timal competitive ratio for basic and rate limit settings. We both
theoretically (in Figure 1) and experimentally (in §4) compare our
results with the algorithm proposed in [23], and show its better
performance in theory and experiments.

Note that recently the one-way trading problem has been ex-
tended to include general convex functions [44]. This formulation
allows for inventory constraints; however the inventory constraints
in [44] are simply a fixed budget constraint. This paper, in contrast,

tackles the online linear programs with inventory management con-
straints, that takes into account the evolution of the inventory over
the time. This additional complexity makes the design and analysis
of algorithms completely different from [44], and more challenging.

Energy procurement problems similar to the one used in our
case study have have been studied in literature frequently, typically
using empirical evaluations [34, 51, 64, 65]. These approaches re-
quire exact modeling of the inputs, which is difficult to obtain due
to multidimensional uncertainty in the problem. However, another
approach is to use the historical data and train machine learning
models to find the energy procurement decisions [9]. Similar to
other empirical approaches, this approach fails to achieve a provable
performance guarantee in practice.

In contrast, some papers have used stochastic optimization tools,
such as Markov decision processes [57], to propose optimal policies
given the probabilistic modeling of uncertain inputs. Deviations
from the stochastic models may severely degrade the overall per-
formance of such designs however. Alternatively, Lyapunov op-
timization has also been proposed [35, 39, 56]. It obtains optimal
control policies over infinite horizon with i.i.d. assumptions for
the inputs. In practice, however, the time horizon is usually finite
and the inputs may not be i.i.d. Different from the aforementioned
approaches, this paper leverages online competitive design. This
approach assumes that neither the exact values nor the stochastic
modeling of the uncertain input are known in advance, and tries to
achieve a bounded competitive ratio for the worst-case input that
can be generated by an adversary.

6 CONCLUDING REMARKS

In this paper, we studied a challenging variation of online linear
optimization where inventory management constraints are consid-
ered. While some special cases of inventory constraints have been
considered previously, e.g., budget constraints [44], no results to
this point allow for general inventory constraints. For this problem,
we introduced new online algorithms that have competitive ratios
that match the optimal achievable by any online algorithm, both
with and without rate constraints on the inventory. The algorithms
we introduced, ARP and ARPRate, rely on novel adaptive techniques
that have not been used in previous algorithms.

To illustrate the improvements that ARP and ARPRate provide
over existing algorithms, we performed a case study for the appli-
cation of energy storage management. We evaluated the proposed
algorithms using extensive data-traces and showed that the im-
provements are not just visible in worst-case performance bounds,
they are realized in real-world scenarios.

The work here motivates a variety of important research direc-
tions. On the applied side, the results in the case study are quite
promising and merit further work to implement and test the al-
gorithms in real systems. On the theoretical side, OLIM is highly
related to a wide variety of classical algorithms problems and it
will be interesting to investigate whether the ideas that underlie
ARP and ARPRate can yield improved algorithms in other settings.

Online Linear Optimization with
Inventory Management Constraints Sigmetrics ’20, June 8–12, 2020, Boston, MA

REFERENCES

[1] [n. d.]. Eastern and Western Data Sets. available at https://www.nrel.gov/grid/
eastern-western-wind-data.html.

[2] [n. d.]. Environmental Responsibility Report - Apple. available
at https://www.apple.com/environment/pdf/Apple_Environmental_
Responsibility_Report_2018.pdf.

[3] [n. d.]. Google Data Center in Changhua County, Taiwan. available at https:
//www.google.com/about/datacenters/inside/locations/changhua-county/.

[4] [n. d.]. Google Data Center in St. Ghislain, Belgium. available at https://www.
google.com/about/datacenters/inside/locations/st-ghislain/.

[5] [n. d.]. Open Power System Data. available at https://data.open-power-system-
data.org/.

[6] [n. d.]. Tesla’s Powerpack proposes battery power for data centers. available
at https://www.datacenterdynamics.com/analysis/teslas-powerpack-proposes-
battery-power-for-data-centers/.

[7] 2016. Wholesale Electricity Market Design Initiatives in the United States: Survey
and Research Needs. EPRI,Technical Results, available at https://www.epri.com/
pages/product/000000003002009273/ (2016).

[8] Jacob D Abernethy, Elad Hazan, and Alexander Rakhlin. 2009. Competing in the
dark: An efficient algorithm for bandit linear optimization. (2009).

[9] Sohaib Ahmad, Arielle Rosenthal, Mohammad H Hajiesmaili, and Ramesh K
Sitaraman. 2019. Learning from Optimal: Energy Procurement Strategies for
Data Centers. In Proceedings of the Tenth ACM International Conference on Future
Energy Systems. ACM, 326–330.

[10] M Ajtai, N Megiddo, and O Waarts. 2001. Improved algorithms and analysis for
secretary problems and generalizations. SIAM Journal on Discrete Mathematics
14, 1 (2001), 1–27.

[11] Susanne Albers. 2017. On Energy Conservation in Data Centers. In Proc. of ACM
SPAA. 35–44.

[12] Susanne Albers and Jens Quedenfeld. 2018. Optimal Algorithms for Right-Sizing
Data Centers. In Proc. of ACM SPAA. 363–372.

[13] Baruch Awerbuch and Robert Kleinberg. 2008. Online linear optimization and
adaptive routing. J. Comput. System Sci. 74, 1 (2008), 97–114.

[14] Moshe Babaioff, Nicole Immorlica, David Kempe, and Robert Kleinberg. 2008.
Online auctions and generalized secretary problems. ACM SIGecom Exchanges 7,
2 (2008), 7.

[15] Luiz André Barroso and Urs Hölzle. 2007. The case for energy-proportional
computing. Computer 12 (2007), 33–37.

[16] H Böckenhauer, D Komm, R Královič, and P Rossmanith. 2014. The online
knapsack problem: Advice and randomization. Theoretical Computer Science 527
(2014), 61–72.

[17] A. Borodin and R El-Yaniv. 1998. Online computation and competitive analysis.
Cambridge University Press.

[18] Niv Buchbinder and Joseph Naor. 2009. Online primal-dual algorithms for cover-
ing and packing. Mathematics of Operations Research 34, 2 (2009), 270–286.

[19] CAISO [n. d.]. CAISO electricity market. available at https://www.caiso.com/.
[20] Santosh Chalise, Amir Golshani, Shekhar Raj Awasthi, Shanshan Ma, Bijen Raj

Shrestha, Labi Bajracharya, Wei Sun, and Reinaldo Tonkoski. 2015. Data center
energy systems: Current technology and future direction. In Proc. of IEEE PES.

[21] Joseph Wun-Tat Chan, Francis YL Chin, Deshi Ye, and Yong Zhang. 2007. Online
frequency allocation in cellular networks. In Proc. of ACM SPAA. 241–249.

[22] Chi-Kin Chau and Lin Yang. 2016. Competitive online algorithms for geographical
load balancing in data centers with energy storage. In Proceedings of the 5th
International Workshop on Energy Efficient Data Centres. ACM, 1.

[23] Chi-Kin Chau, Guanglin Zhang, and Minghua Chen. 2016. Cost minimizing
online algorithms for energy storage management with worst-case guarantee.
IEEE Transactions on Smart Grid 7, 6 (2016), 2691–2702.

[24] Chao-Kai Chiang, Tianbao Yang, Chia-Jung Lee, Mehrdad Mahdavi, Chi-Jen Lu,
Rong Jin, and Shenghuo Zhu. 2012. Online optimization with gradual variations.
In Proc. of COLT. 6–1.

[25] Aron Dobos. 2014. PVWatts version 5 manual. National Renewable Energy
Laboratory Golden, CO.

[26] R. El-Yaniv, A. Fiat, R. M. Karp, and G Turpin. 2001. Optimal search and one-way
trading online algorithms. Algorithmica 30, 1 (2001), 101–139.

[27] ERCOT [n. d.]. ERCOT Electricity Market. available at http://www.ercot.com.
[28] ERCOT [n. d.]. German Electricity Market. available at https://www.smard.de/

en/.
[29] Richard Evans and Jim Gao. 2016. DeepMind AI Reduces Google Data Centre

Cooling Bill by 40%. https://deepmind.com/blog/deepmind-ai-reduces-google-data-
centre-cooling-bill-40/ (2016).

[30] Guy Even, Moti Medina, and Dror Rawitz. 2018. Online Generalized Caching
with Varying Weights and Costs. In Proc. of ACM SPAA. 205–212.

[31] FACTs [n. d.]. Comparison of commercial battery types. available at https:
//en.wikipedia.org/wiki/Comparison_of_commercial_battery_types.

[32] Björn Feldkord and Friedhelm Meyer auf der Heide. 2018. Online facility location
with mobile facilities. In Proc. of ACM SPAA. 373–381.

[33] Mahdi Ghamkhari, Adam Wierman, and Hamed Mohsenian-Rad. 2016. Energy
Portfolio Optimization of Data Centers. IEEE Trans. Smart Grid (2016).

[34] Sriram Govindan, Di Wang, Anand Sivasubramaniam, and Bhuvan Urgaonkar.
2013. Aggressive Datacenter Power Provisioning with Batteries. ACM Transac-
tions on Computing Systems 31, 1 (2013), 2:1–2:31.

[35] Yuanxiong Guo and Yuguang Fang. 2013. Electricity cost saving strategy in
data centers by using energy storage. IEEE Transactions Parallel and Distributed
Systems 24, 6 (2013), 1149–1160.

[36] Mohammad H Hajiesmaili, Minghua Chen, Enrique Mallada, and Chi-Kin Chau.
2017. Crowd-Sourced Storage-Assisted Demand Response in Microgrids. In Proc.
of ACM eEnergy. 91–100.

[37] Mohammad H Hajiesmaili, Lei Deng, Minghua Chen, and Zongpeng Li. 2017.
Incentivizing device-to-device load balancing for cellular networks: An online
auction design. IEEE Journal on Selected Areas in Communications 35, 2 (2017),
265–279.

[38] Elad Hazan et al. 2016. Introduction to online convex optimization. Foundations
and Trends® in Optimization 2, 3-4 (2016), 157–325.

[39] Longbo Huang, Jean Walrand, and Kannan Ramchandran. 2012. Optimal demand
response with energy storagemanagement. In Proc. IEEE SmartGridComm. 61–66.

[40] Adam Kalai and Santosh Vempala. 2002. Geometric algorithms for online opti-
mization. In Journal of Computer and System Sciences.

[41] Kia Khezeli and Eilyan Bitar. 2018. Risk-sensitive learning and pricing for demand
response. IEEE Transactions on Smart Grid 9, 6 (2018), 6000–6007.

[42] Koji Kobayashi, Shuichi Miyazaki, and Yasuo Okabe. 2007. A tight bound on
online buffer management for two-port shared-memory switches. In Proc. of
ACM SPAA. 358–364.

[43] Minghong Lin, AdamWierman, Lachlan LHAndrew, and Eno Thereska. 2013. Dy-
namic right-sizing for power-proportional data centers. IEEE/ACM Transactions
on Networking 21, 5 (2013), 1378–1391.

[44] Qiulin Lin, Hanling Yi, John Pang, Minghua Chen, Adam Wierman, Michael
Honig, and Yuanzhang Xiao. 2019. Competitive online optimization under in-
ventory constraints. Proceedings of the ACM on Measurement and Analysis of
Computing Systems 3, 1 (2019), 10.

[45] J. Lorenz, K. Panagiotou, and A Steger. 2009. Optimal algorithms for k-search
with application in option pricing. Algorithmica 55, 2 (2009), 311–328.

[46] Zhoujia Mao, Can Emre Koksal, and Ness B Shroff. 2016. Optimal online
scheduling with arbitrary hard deadlines in multihop communication networks.
IEEE/ACM Transactions on Networking 24, 1 (2016), 177–189.

[47] Esther Mohr, Iftikhar Ahmad, and Günter Schmidt. 2014. Online algorithms for
conversion problems: a survey. Surveys in Operations Research and Management
Science 19, 2 (2014), 87–104.

[48] Erik Nygren, Ramesh K Sitaraman, and Jennifer Sun. 2010. The akamai network:
a platform for high-performance internet applications. ACM SIGOPS Operating
Systems Review 44, 3 (2010), 2–19.

[49] NYISO [n. d.]. NYISO Electricity Market. available at http://www.nyiso.com.
[50] Francesco Orabona and Dávid Pál. 2015. Scale-free algorithms for online linear

optimization. In International Conference on Algorithmic Learning Theory. 287–
301.

[51] Darshan S Palasamudram, Ramesh K Sitaraman, Bhuvan Urgaonkar, and Rahul
Urgaonkar. 2012. Using batteries to reduce the power costs of internet-scale
distributed networks. In Proc. of ACM SoCC.

[52] Xiaoqi Ren, Palma London, Juba Ziani, and Adam Wierman. 2018. Datum: Man-
aging Data Purchasing and Data Placement in a Geo-Distributed Data Market.
IEEE/ACM Transactions on Networking 26, 2 (2018), 893–905.

[53] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[54] MEV Team et al. 2008. A guide to understanding battery specifications. (2008).
[55] Jinlong Tu, Lian Lu, Minghua Chen, and Ramesh K Sitaraman. 2013. Dynamic

provisioning in next-generation data centers with on-site power production.
In Proceedings of the fourth international conference on Future energy systems.
137–148.

[56] R. Urgaonkar, B. Urgaonkar, M.J. Neely, and A. Sivasubramaniam. 2011. Optimal
power cost management using stored energy in data centers. In Proc. ACM
SIGMETRICS.

[57] Peter M van de Ven, Nidhi Hegde, Laurent Massoulié, and Theodoros Salonidis.
2013. Optimal control of end-user energy storage. IEEE Transactions on Smart
Grid 4, 2 (2013), 789–797.

[58] Di Wang, Chuangang Ren, Anand Sivasubramaniam, Bhuvan Urgaonkar, and
Hosam Fathy. 2012. Energy storage in datacenters: what, where, and how much?.
In ACM SIGMETRICS Performance Evaluation Review, Vol. 40. 187–198.

[59] Hong Xu and Baochun Li. 2014. Reducing electricity demand charge for data
centers with partial execution. In Proc. of ACM eEnergy. 51–61.

[60] Lin Yang, Lei Deng, Mohammad H Hajiesmaili, Cheng Tan, and Wing Shing
Wong. 2018. An optimal algorithm for online non-convex learning. Proceedings
of the ACM on Measurement and Analysis of Computing Systems 2, 2 (2018), 25.

[61] Lin Yang, Wing Shing Wong, and Mohammad H Hajiesmaili. 2017. An optimal
randomized online algorithm for QoS buffer management. Proceedings of the
ACM on Measurement and Analysis of Computing Systems 1, 2 (2017), 36.

https://www.nrel.gov/grid/eastern-western-wind-data.html
https://www.nrel.gov/grid/eastern-western-wind-data.html
https://www.apple.com/environment/pdf/Apple_Environmental_Responsibility_Report_2018.pdf
https://www.apple.com/environment/pdf/Apple_Environmental_Responsibility_Report_2018.pdf
https://www.google.com/about/datacenters/inside/locations/changhua-county/
https://www.google.com/about/datacenters/inside/locations/changhua-county/
https://www.google.com/about/datacenters/inside/locations/st-ghislain/
https://www.google.com/about/datacenters/inside/locations/st-ghislain/
https://data.open-power-system-data.org/
https://data.open-power-system-data.org/
https://www.datacenterdynamics.com/analysis/teslas-powerpack-proposes-battery-power-for-data-centers/
https://www.datacenterdynamics.com/analysis/teslas-powerpack-proposes-battery-power-for-data-centers/
https://www.epri.com/pages/product/000000003002009273/
https://www.epri.com/pages/product/000000003002009273/
https://www.caiso.com/
http://www.ercot.com
https://www.smard.de/en/
https://www.smard.de/en/
https://en.wikipedia.org/wiki/Comparison_of_commercial_battery_types
https://en.wikipedia.org/wiki/Comparison_of_commercial_battery_types
http://www.nyiso.com

Sigmetrics ’20, June 8–12, 2020, Boston, MA Submission #16

[62] Ying Zhang, Mohammad H Hajiesmaili, Sinan Cai, Minghua Chen, and Qi Zhu.
2018. Peak-aware online economic dispatching for microgrids. IEEE Transactions
on Smart Grid 9, 1 (2018), 323–335.

[63] Zijun Zhang, Zongpeng Li, and Chuan Wu. 2017. Optimal posted prices for
online cloud resource allocation. Proceedings of the ACM on Measurement and
Analysis of Computing Systems 1, 1 (2017), 23.

[64] Wenli Zheng, Kai Ma, and Xiaorui Wang. 2014. Exploiting thermal energy
storage to reduce data center capital and operating expenses. In Proc. IEEE HPCA.
132–141.

[65] Haihang Zhou, Jianguo Yao, Haibing Guan, and Xue Liu. 2015. Comprehensive
understanding of operation cost reduction using energy storage for IDCs. In Proc.
IEEE INFOCOM. 2623–2631.

[66] Ruiting Zhou, Zongpeng Li, and Chuan Wu. 2015. An online procurement
auction for power demand response in storage-assisted smart grids. In Proc. of
IEEE INFOCOM. 2641–2649.

A PROOF OF THEOREM 3.1

To prove this result we need to show that ARP respects all the con-
straints in OLIM. First, we can see that it respects the demand
covering constraint, i.e., x(t) ≥ d(t) − b(t − 1), by the projection in
Equation (13). Second, we show that ARP always respects the ca-
pacity constraints. At time slot t , which lies in a reservation period
(see Definition 3), the total amount of purchased asset from the
beginning of current reservation period is equal to

∑v
i=1GBi (ξi),

which is less than or equal to
∑v
i=1 Bi . The demand from the be-

ginning of current reservation period is
∑v
i=2 Bi . The asset stored

in the physical inventory is
∑v
i=1GBi (ξi) −

∑v
i=2 Bi , which is less

than or equal to
∑v
i=1 Bi −

∑v
i=2 Bi = B1 according to the definition

of GBi (ξi). B1 is the capacity of the physical inventory. That is, the
amount of reserved power always respects the capacity constraint.

B PROOFS RELATED TO ARP

B.1 Proof of Lemma 1

For each virtual inventory, ARP stores the asset only if the market
price is less than the reservation price. Hence, the cost of the stored

assets in the j-th inventory is less than
∫ b̂i, j
0 G−1Bi, j (b)db. By aggre-

gation over n reservation periods and virtual inventories, we can
compute the aggregate cost incurred by ARP as

n∑
i=1

v̂i∑
j=1

∫ b̂i, j

0
G−1Bi, j (b)db, (21)

where there are v̂i virtual inventory units at reservation period i ,
ξ̂i, j and b̂i, j is the final inventory level of virtual inventory j at reser-
vation period i . The additional amount of electricity needed to sat-
isfy the demand in the idle period is equal to D−

∑n
i=1

∑v̂i
j=1 b̂i, j + b̂,

where D be the total demand during the time horizon, i.e., D =∑
t ∈T d(t), and b̂ be the final inventory level of the physical inven-

tory, i.e., b̂ = b(T). Hence, the cost of the online algorithm during
the idle period is at most

©«D −
n∑
i=1

v̂i∑
j=1

b̂i, j + b̂
ª®¬pmax, (22)

Adding (21) and (22) completes the proof.

B.2 Proof of Lemma 2

The cost of an optimal offline solution, denoted as cost(OPT), can be
split into two parts. To characterize a lower bound for the offline

optimum let us define Fi (β) as the minimum cost of purchasing β
units of asset during the i-th reservation period. Let βi be the asset
purchased by the optimal offline solution during the i-th reservation
period. Then, the cost of the optimal offline solution during the i-th
reservation period is at least Fi (βi). Let p̃ be the minimum price
during the idle periods, then we have that the cost of the offline
algorithm is lower bounded by

∑n
i=1 Fi (βi)+ (D−

∑n
i=1 βi)×p̃. This

completes the proof.

B.3 Additional Material Related to Lemma 4

We state the following lemma on the properties of function G−1Bi (b)
and Fi (β) to facilitate the proof of Lemma 4. Let Bi, j be the capac-
ity of the j-th inventory and b̂i, j be the final inventory level at
reservation period i .

Lemma 6. Defining b̂i as the initial state of the inventory of the
offline algorithm at i-th reservation period, there is a worst-case input
instance such that for all 0 < β < β ′ <

∑v̂i
j=1 Bi, j − b̂i , we have

(1) Fi (0) = 0;
(2) Fi (β

′) > Fi (β);
(3) Fi (β

′) − Fi (β) ≤
pmax
α (β

′ − β).

Proof. Statements (1) and (2) are immediate. For the third state-
ment, assume there is a worst instance ω = [⟨p(t),d(t)⟩]t ∈T . The
adversary can construct a new instance ω ′ (as shown in Equation
(23)) by adding one time slot before each time slot of instance ω.
Note that this is possible since the adversary can set the length of
time horizon. The market prices for the newly added time slots is
pmax/α and the demand is always equal to zero.

In this way, we construct a new instance under which the cost of
the online algorithm does not change, and that of the offline optimal
solution will not increase. Thus, ω ′ is also the worst instance.

Let Fi (β) be the minimum cost when buying β units of asset
during the i-th reservation period. When the optimal policy buys
another β ′ − β , β ′ <

∑v̂i
j=1 Bi, j − b̂i , units of asset, the cost will not

be larger than pmax
α (β

′ − β), since the optimal policy can buy asset
at any newly added time slots.

Thus, there is a worst instance, such that Fi (β ′) − Fi (β) ≤

pmax/α(β ′ − β), for 0 < β < β ′ <
∑
j b̂i, j − b̂i . This completes

the proof. □

C CONVERGENCE OF INITVS
Theorem 4. Given a market price p(t) ∈ [pmin,pmax], InitVS

converges to a feasible solution Bv and x̂(t) which satisfies Equations
(19) and (20) simultaneously.

Proof. It is straightforward to see that B′v is always larger than
or equal to Bv . Further, if the value of B′v − Bv is larger than ε1,
the value of Bv will increase by at least ε1. Thus, there must be an
iteration such that B′v − Bv ≤ ε1. □

D COMPETITIVE ANALYSIS OF ARPRATE
If D = 0, ARPRate the result follows from the analysis of ARP. hus,
we focus our analysis on the case D > 0.

Similar to the analysis for ARP, we would like to upper bound
the cost of ARPRate. To achieve this, first we give the following

Online Linear Optimization with
Inventory Management Constraints Sigmetrics ’20, June 8–12, 2020, Boston, MA

ω ′ =
[〈pmax

α
, 0

〉
, ⟨p(1),d(1)⟩,

〈pmax
α
, 0

〉
, ⟨p(2),d(2)⟩, . . . ,

〈pmax
α
, 0

〉
, ⟨p(t),d(t)⟩,

〈pmax
α
, 0

〉]
. (23)

two lemmas which characterize properties of the worst instance for
ARPRate. Lemma 7 implies that in worst case, the output constraint
is not active. Lemma 5 characterizes an upper bound on the cost of
ARPRate.

Lemma 7. Under the worst case, x̃(t) = 0, for ∀t ∈ T , where
x̃(t) = [d(t) − ρd − x̂(t)]

+.

Proof. We prove this lemma by contradiction. Assume there is
a worst instance ω = [⟨p(t),d(t)⟩]t ∈T , where x̃(t) > 0 for time slot
t . We can construct a new instance which is the same as ω except
at the t-th time slot. For time slot t , the demand is set to x(t) − δ ,
where δ < x̃(t), and the market price is equal to p(t). In this way,
the cost of ARP at time slot t will decrease by p(t)δ . The costs on
other time slots are unchanged, because the modification on the
demand does not influence the capacity and reservation price of
virtual inventory according to the rules of ARPRate. On the other
hand, the cost of OPT at time slot t will decrease by at least p(t)δ ,
since the procurement amount of OPT is larger than δ . In this case,
we have a new instance ω ′ under which the cost ratio is larger
than that of the worst instance, contradicting the assumption. This
completes the proof. □

Lemma 7 implies that under the worst case the output constraint
is not active. Thus, all that is left is to take into account the influence
of the input rate constraint. Recall that in the basic version, ARP, the
procurement amount is always larger than or equal to x̂(t), which
is computed in Equation (19). With an input constraint, x̂(t) may
not be satisfied, and the maximum procurement amount is limited
by ρc +d(t). We define Tr ⊂ T be the set of time slots at which the
input rate truncates the procurement amount. That is, the following
equation holds for t ∈ Tr .∑

i≤v

[
GBi (p(t)) −GBi (ξi)

]+
> ρc + d(t).

For t ∈ Tr , we define p′(t) as the value which satisfies the following
equation.∑

i≤v

[
GBi (p

′(t)) −GBi (ξi)
]+
= ρc + d(t), for ∀t ∈ T .

p′(t) is the actual reservation price computed in Algorithm 4, and
obviously, p′(t) > p(t). Let µ(t) = p′(t)−p(t) denotes the difference
between p′(t) and p(t).

Similarly to Lemma 1, we use Lemma 5 to upper bound the cost
of the ARPRate.

Proof. Proof of Lemma 5 By Lemma 7, we have that, under the
worst case, x̃(t) = 0 and the amount of reserved asset is always less
than or equal to the value computed in Equation (19). Based on the
analysis in 1, we have that the cost of ARPRate is upper bounded by

Q+

(
D −

n∑
i=1

v̂i∑
j=1

b̂i, j + b̂

)
·pmax. Moreover, ∀t ∈ Tr , the actual price

is less than the reservation price by µ(t), so the above upper bound

is further modified toQ+

(
D −

n∑
i=1

v̂i∑
j=1

b̂i, j + b̂

)
·pmax−

∑
t ∈Tr

µ(t)x(t).

This completes the proof. □

With the above two lemmas, the competitive ratio of ARPRate
is upper bounded by

cost(ARPRate) − b̂pmax
cost(OPT)

≤

Q +

(
D −

n∑
i=1

v̂i∑
j=1

b̂i, j

)
· pmax −

∑
t ∈Tr

µ(t)x(t)

n∑
i=1

F ′i (βi) +

(
D −

n∑
i=1

βi

)
· p̃

≤max

Q +

(
n∑
i=1

βi −
n∑
i=1

v̂i∑
j=1

b̂i, j

)
· pmax −

∑
t ∈Tr

µ(t)x(t)

n∑
i=1

F ′i (βi)

,α

≤max

Q +

(
n∑
i=1

v̂i∑
j=1

Bi, j −
n∑
i=1

v̂i∑
j=1

b̂i, j

)
pmax −

∑
t ∈Tr

µ(t)x(t)

n∑
i=1

F ′i

(
v̂i∑
j=1

Bi, j

) ,α

,

where F ′i (β) is defined as the minimum cost of purchasing β units
of asset during the i-th reservation period. The definition of F ′i (β)
is similar to that of Fi (β) for for the basic version of the problem
and it also respects the properties listed in Lemma 6.

During the lifetime of the j-th virtual inventory of the i-th reser-
vation period, the minimum reservation price is ξ̂i, j . The cost of
the optimal algorithm satisfies

n∑
i=1

F ′i
©«
v̂i∑
j=1

Bi, j
ª®¬ ≥

n∑
i=1

v̂i∑
j=1

ξ̂i, jBi, j −
∑
t ∈Tr

µ(t)x∗(t).

Then, we have

cr(ARPRate)

≤max

Q +

(
n∑
i=1

v̂i∑
j=1

Bi, j −
n∑
i=1

v̂i∑
j=1

b̂i, j

)
pmax −

∑
t ∈Tr

µ(t)x(t)

n∑
i=1

v̂i∑
j=1

ξ̂i, jBi, j −
∑

t ∈Tr
µtx∗(t)

,α

The following lemma characterizes a bound on x(t)/x∗(t) .

Lemma 8. Under the worst case, we have that x(t)/x∗(t) is less
than or equal to the competitive ratio, for any t ∈ Tr .

Proof. Let ω = [⟨p(t),d(t)⟩]t ∈T be the worst instance and at
time slot t , there is x(t)/x∗(t) > cr(ARPRate). We can construct a
new instance ω ′ by increasing the market price at time slot t by δ ,
where δ ≤ µ(t). That is

Sigmetrics ’20, June 8–12, 2020, Boston, MA Submission #16

ω ′ = [⟨p(1),d(1)⟩, . . . , ⟨p(t) + δ ,d(t)⟩, . . . , ⟨p(T),d(T)⟩].

Under instance ω ′, the cost of ARP will increase by x(t)δ , and
that of OPT increase by less than x (t)δ

cr(ARPRate) . In this way, we can
get a worse instance ω ′ than ω, contradicting the assumption that
ω is the worst instance. This completes the proof. □

By the above lemma, we have that,∑
t ∈Tr

p̃tx(t)∑
t ∈Tr

p̃tx∗(t)
≤ cr(ARPRate).

This yields

cr(ARPRate) ≤ max

Q +

(
n∑
i=1

v̂i∑
j=1

Bi, j −
n∑
i=1

v̂i∑
j=1

b̂i, j

)
pmax

n∑
i=1

v̂i∑
j=1

ξ̂i, jBi, j

,α

.

Combining the above with Lemma 3, we have cr(ARPRate) ≤ α , as
desired.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Inventory Management Constraints
	2.2 Problem Formulation
	2.3 Related Algorithmic Problems
	2.4 A Case Study: Energy Storage Management

	3 Optimal Online Algorithms
	3.1 ARP: Adaptive Reservation Price
	3.2 Analysis of ARP
	3.3 ARPRate: Incorporating Rate Constraints

	4 A case study
	4.1 Experimental Setup
	4.2 Comparison Algorithms and Settings
	4.3 Results for ARP
	4.4 Results for ARPRate

	5 Related Work
	6 Concluding remarks
	References
	A Proof of Theorem 3.1
	B Proofs Related to ARP
	B.1 Proof of Lemma 1
	B.2 Proof of Lemma 2
	B.3 Additional Material Related to Lemma 4

	C Convergence of InitVS
	D Competitive analysis of ARPRate

