
25

An Optimal Algorithm for Online Non-Convex Learning

LIN YANG, The Chinese University of Hong Kong

LEI DENG, The Chinese University of Hong Kong

MOHAMMAD H. HAJIESMAILI, Johns Hopkins University, MD, USA

CHENG TAN, The Chinese University of Hong Kong, China

WING SHING WONG, The Chinese University of Hong Kong, China

In many online learning paradigms, convexity plays a central role in the derivation and analysis of online

learning algorithms. The results, however, fail to be extended to the non-convex settings, while non-convexity

is necessitated by a large number of recent applications. The Online Non-Convex Learning (ONCL) problem
generalizes the classic Online Convex Optimization (OCO) framework by relaxing the convexity assumption

on the cost function (to a Lipschitz continuous function) and the decision set. The state-of-the-art result for

the ONCL demonstrates that the classic online exponential weighting algorithm attains a sublinear regret

of O(
√
T logT). The regret lower bound for the OCO, however, is Ω(

√
T), and to the best of our knowledge,

there is no result in the context of the ONCL problem achieving the same bound. This paper proposes the

Online Recursive Weighting (ORW) algorithm with regret of O(
√
T), matching the tight regret lower bound

for the OCO problem, and fills the regret gap between the state-of-the-art results in the online convex and

non-convex optimization problems.

CCS Concepts: • Theory of computation→Online learning algorithms;Regret bounds; •Computing
methodologies→ Machine learning algorithms;

Additional Key Words and Phrases: Online non-convex learning, online convex optimization, Lipschitz expert,

regret, online recursive weighting

ACM Reference Format:
Lin Yang, Lei Deng, MohammadH. Hajiesmaili, Cheng Tan, andWing ShingWong. 2018. AnOptimal Algorithm

for Online Non-Convex Learning. Proc. ACM Meas. Anal. Comput. Syst. 2, 2, Article 25 (June 2018), 25 pages.
https://doi.org/10.1145/3224420

1 INTRODUCTION
1.1 Background and Motivation
The Online Convex Optimization (OCO) framework has widely influenced the online learning

community since the seminal work by Zinkevich [51]. The OCO is modeled as a repeated game

composed of T iterations. At iteration t , the player chooses a point xt from a bounded convex

decision set K ⊂ Rn ; after the choice is committed, a bounded convex cost function ft : K 7→ R
is revealed to the player. The goal of the player is to minimize the regret, which is defined as the

Authors’ addresses: Lin Yang, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China, 999077, yl015@ie.cuhk.

edu.hk; Lei Deng, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China, 999077, ldeng@ie.cuhk.edu.hk;

Mohammad H. Hajiesmaili, Johns Hopkins University, 3400 N Charles St. Baltimore, MD, USA, hajiesmaili@jhu.edu; Cheng

Tan, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China, 999077, tancheng1987love@163.com; Wing

Shing Wong, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China, 999077, wswong@ie.cuhk.edu.hk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

2476-1249/2018/6-ART25

https://doi.org/10.1145/3224420

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 2, Article 25. Publication date: June 2018.

https://doi.org/10.1145/3224420
https://doi.org/10.1145/3224420

25:2 Lin Yang, Lei Deng, Mohammad H. Hajiesmaili, Cheng Tan, and Wing Shing Wong

difference between the online cumulative cost and the cumulative cost using an optimal offline

choice in hindsight. This model can be applied to many real-world problems, such as online routing

[7, 45], spam email filtering [17, 42], online metric learning [24], ad selection and content ranking

in search engines [9, 35, 47], etc.

A promising result related to the OCO model is that the regret of the state-of-the-art efficient

algorithms [18] is sublinear, implying that the average cost difference per iteration converges

to zero as the number of iterations goes to infinity. It is well known that the lower bound of

the regret for the OCO problem is O(
√
T) [18] and researchers have proposed a large number of

online algorithms whose regret attains this lower bound, including the Online Gradient Decent

method [51], the Stochastic Gradient Decent method [20, 39, 40, 44], the Online Newton Step, and

many regularization-related methods [16, 26] (see the recent survey paper [18], and the references

therein).

One of the most natural extensions for the OCO problem is to relax the convexity assumption

on the decision set K and the cost function ft . This extension brings out the Online Non-Convex

Learning (the ONCL) problem, which is necessitated by tons of state-of-the-art applications. For

example, in the portfolio selection problem [10, 25], the decision maker (e.g., the trader) chooses

a distribution of her wealth allocation over n assets xt , at each round. By the end of each round,

the adversary chooses the market returns of the assets with positive values. In some specific

settings [5, 32, 46], the online portfolio selection problem is a non-convex one due to the non-

convex diversification constraints and non-convex transaction costs, and thus the traditional OCO
framework fails in modeling such case. In addition, there are extensive machine learning research

focusing on non-convex loss functions in large margin classifiers [12, 37, 49]. In [12, 37], non-convex

online Support Vector Machine (SVM) models has been studied which adopts a non-convex loss

function, called Ramp Loss, to suppress the influence of outliers. In [49], a special non-convex

penalty, called the smoothly clipped absolute deviation penalty, is imposed on the hinge loss function

in the SVM. Such a new SVM is applied to identify important genes for cancer classification [49].

1.2 Related Results
The ONCL problem is not a new problem and there are plenty prior works on it. Among them,

[12] and [15] propose respective heuristic online training algorithms, but neither of them are

rigorously shown to satisfy any regret bound. In [19], Hazan and Kale tackle the ONCL problem

with submodular cost functions, and propose an online algorithm that attains the regret ofO(
√
T). In

[50], an online bandit learning problem with non-convex losses is investigated. The cost function is

again a special non-convex function, defined as the composition of a non-increasing scalar function

with a linear function of small variation. An online algorithm is developed with Õ(poly(d)T 2/3)

regret, where poly(d) stands for a polynomial with respect to the dimension of the decision set d .
The most related works to ours are [31] and [36], where by applying the exponential weighting

method [6] the regret of O(
√
T logT) is attained.

In addition, the ONCL problem has been broadly investigated under a similar problem, called

the Lipschitz Expert problem [27, 29], which generalizes the traditional Expert problem [14] to

metric spaces. For such a problem, a regret of O(
√
T logT) can be achieved [29]. However, to the

best of our knowledge, for the general ONCL problem or the Lipschitz Expert problem, no online

algorithm can achieve the regret of O(
√
T) as the well-known lower bound for the OCO problem.

1.3 Our Contributions and Adopted Techniques
This paper tackles the ONCL problem, with non-convex L-Lipschitz cost functions and non-convex
decision set. We propose a novel online algorithm, called the Online Recursive Weighting (the

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 2, Article 25. Publication date: June 2018.

An Optimal Algorithm for Online Non-Convex Learning 25:3

ORW) algorithm, and prove that the regret of the ORW is upper bounded by O(
√
T). The obtained

regret bound matches the well-known lower bound of the regret for the OCO [18], hence, the ORW
algorithm is asymptotically optimal for the general ONCL problem.

The general idea of theORW algorithm is to divide the decision set intomultiple subsets according

to a grid layered structure. Any subset at the upper layer is divided into multiple smaller subsets

at the lower layers. Our algorithm recursively selects the subset from the topmost layer to the

bottommost layer until a decision point is identified. At each layer, the ORW algorithm leverages

the classic Exponential Weighting algorithm [6, 14] to select a subset at the lower layer. As the

core technical contribution, the ORW properly partitions the subsets and sets the subset-selecting

probabilities, thereby, it asymptotically achieves O(
√
T) regret.

Then, the ORW algorithm is extended to an adaptive version (the AORW algorithm), which

increases the granularity parameter gradually as time goes on. The AORW guaranteesO(
√
T) regret,

reduces the computational complexity of the ORW, and works properly when the duration of time

horizon is unknown to the online player.

1.4 Basic Notations and Organizations
In the rest of this paper, we use calligraphy font to denote sets, e.g.,K . In equations, we use Fraktur

font to denote algorithms, e.g., R. We use bold math font to denote vectors whose entries are

represented by the corresponding normal math font, e.g., i = (i1, i2, · · · , in). We further gives the

following definition for L-Lipschitz functions.

Definition 1. A function f : K → R (where K ⊂ Rn) is L-Lipschitz if

| f (x) − f (y)| ≤ L∥x −y∥2, ∀x ,y ∈ K . (1)

The rest of the paper is organized as follows. Section 2 introduces details on the problem

formulation as well as the notation used in this paper. In Section 3, we introduce the proposed

ORW algorithm and its regret is analyzed in Section 4. In Sections 5, we extend our algorithm to

an adaptive version called AORW. Section 6 reviews the related literature and potential extensions.

Finally, Section 7 concludes the paper.

2 PROBLEM SETTING OF ONLINE NON-CONVEX LEARNING
We describe our online non-convex learning problem as a structured repeated game. At each

iteration t , the player chooses a decision xt ∈ K , where K ⊆ Rn is a bounded decision set whose

diameter is D, i.e., supx ,y∈K | |x −y | |2 = D. After the player commits to a decision point at iteration

t , the adversary chooses a cost function ft (x) ∈ F , where F : K 7→ R+ is a set of cost functions
which are assumed to be non-negative and L-Lipschitz (as defined in Equation (1)).

Note that in the originalOCOmodel, the cost function and decision set are assumed to be convex.

In this work, we take into account the general class of cost functions and decision sets which are

not necessarily convex.

In our model, we consider the full feedback case [18], in which the cost function ft (x) is revealed
to the player only after a choice is made at iteration t . At each iteration, the player needs to make

online decisions without knowing the current and future cost functions. Fed with the historical

cost functionsHt = (f1, f2, . . . , ft−1), the decision of an online algorithm A at iteration t is denoted
as xt = A(Ht). The summary of main notations related to problem setting is given in Table 1.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 2, Article 25. Publication date: June 2018.

25:4 Lin Yang, Lei Deng, Mohammad H. Hajiesmaili, Cheng Tan, and Wing Shing Wong

Table 1. Summary of notations related to problem setting

Notation Description
t Index of iteration

T The number of iterations, T ≥ 1

T Set T = {1, 2, . . . ,T }

n The dimension of the decision space

xt Chosen decision point at t
K The decision set available for the online player

D Diameter of the decision set K

ft (x)
ft (x) : K 7→ [0, 1]. Cost function at iteration t , known for t − 1, unknown for

τ ≥ t
L Lipschitz constant for the cost functions

F The set of cost functions which are available for adversary

Ht
Ht = (f1, f2, . . . , ft−1). The historical cost functions available for the online

algorithm at iteration t

A
An online algorithm which maps from the historical cost functions Ht to a

decision point xt for all t = 1, 2, · · ·

We use the pseudo-regret
1
as a common performance metric to evaluate our proposed online

algorithm for the ONCL problem, formally defined as

regretT (A)
def

= sup

f1 , ...,fT ∈F

{
T∑
t=1

E[ft (xt)] − min

x ∈K

T∑
t=1

ft (x)

}
, (2)

which is the cumulative difference between the expected cost of the online algorithm and the cost

of the best fixed offline decision up toT . The expectation in (2) is taken over the randomness of the

decision at each iteration t if the online algorithm A is randomized.

Our goal is to design an online algorithm for the ONCL problem and try to minimize the regret.

Ideally, it is desired to have a sublinear regret with respect toT , i.e., regretT (A) = o(T). The sublinear
regret implies that time-average performance of the online algorithm is as good as the best fixed

strategy as time goes to infinity.

In Section 3, we propose an online algorithm for the ONCL problem, called the Online Recursive

Weighting (ORW). In Section 4, we analyze the performance of the ORW and demonstrate that

its regret is O(
√
T) asymptotically, which attains the lower bound of the regret for the basic OCO

problem [18].

3 ONLINE RECURSIVE WEIGHTING ALGORITHM
The Online Recursive Weighting (ORW) algorithm is based on the idea of dividing the entire

decision set into several sampling subsets so that each subset contains highly correlated elements.

An essential tuning parameter for the algorithm is the granularity of the sampling subsets, which

determines the number of final sample points (details in Sections. 3.1 and 3.2).

To define the granularity of the sampling subsets and the decision policy of the ORW algorithm,

we construct a layered grid structure . The topmost layer consists of a single grid and hence a single

subset including the entire decision set K . The sampling subsets are the subsets at the bottommost

layer. In Section 3.1, we explain the details of constructing the layered grid structure.

1
We call it regret in short in the rest of this paper.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 2, Article 25. Publication date: June 2018.

An Optimal Algorithm for Online Non-Convex Learning 25:5

Table 2. Summary of key notations related to the ORW algorithm

Notation Description
R The notation used for the ORW algorithm in the equations (Algorithm 1)

D Cover cube of the decision set K

l Index of layer

il Index for a sub-cube/subset at l-th layer, il = (il ,1, il ,2, · · · , il ,n)
Dl (il) Layer l sub-cube indexed by il
Kl (il) Layer l subset indexed by il
Il Index set of nonempty subsets at layer l

vs (il) Index of layer s subset that contains Kl (il)
Es (Kl (il)) Index set of nonempty layer s subsets within the subset Kl (il), il ∈ Il

m The number of layers where the subsets are sampled

rm(im) The sample point for the subset Km(im)

cm,t (im)
The cost on the sample point of the subset Km(im) at iteration t , i.e.,

cm,t (im)
def

= ft (rm(im))

Lm
The maximum cost difference between two points in the same subset at layer

m

Il ,t The index of the subset chosen at layer l at iteration t

c̄l ,t (il)
The normalized expected cost conditioning on that subset Kl (il) is chosen at

layer l at iteration t . For short, we also call it the expected cost of choosing

Kl (il) at layer l at iteration t

C̄l ,t (il)
The cumulative sum for c̄l ,τ (il) up to iteration t , i.e., C̄l ,t (il) =

∑t
τ=1

c̄l ,τ (il).
For short, we also call it the cumulative expected cost of choosing Kl (il) at
layer l up to iteration t

In the next step (Section 3.2), a single element is randomly selected from each sampling subset

called sample point, and by grouping all these points, we construct the set of sample points. At each

iteration, the algorithm selects a decision point randomly from the set of sample points according

to a tree decision structure. Beginning with the topmost layer, the ORW algorithm probabilistically

selects a subset by running Hedge update
2
, and subsequently, the ORW algorithm continues among

the subsets of one layer below that lies inside the selected subset of the previous layer.

Designing the tree decision structure to select among sampling points is the core technical

contribution of the ORW algorithm and is proposed in Section 3.3. The summary of key notations

related to the algorithm design is given in Table 2.

3.1 A Layered Grid Structure
Recall that the diameter of bounded decision setK is D, hence, it is possible to find a bounded cube
of length D, denoted by D, that can cover K entirely, i.e., K ⊂ D. At layer l ∈ N+, we partition D

into smaller identical sub-cubes with edge length of size D/2
l
. The decision set is n-dimensional,

hence the total number of sub-cubes is equal to 2
nl
. For simplicity, each sub-cube is indexed by a

distinct n-dimensional vector il = (il ,1, il ,2, . . . , il ,n), where 1 ≤ il , j ≤ 2
l , j = 1, 2, . . . ,n, and the

sub-cube indexed by il is denoted by Dl (il). One can refer to Fig. 1 for an illustrative example with

n = 2 and l = 1.

2
Hedge algorithm maintains weights for each expert/decision point, which are updated according to the observed losses at

each step. For details, readers can refer to [14].

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 2, Article 25. Publication date: June 2018.

25:6 Lin Yang, Lei Deng, Mohammad H. Hajiesmaili, Cheng Tan, and Wing Shing Wong

1i

2i
D

1 2

1

2

1((1,1)) 1((2,1))

1((1,2)) 1((2,2))

1((2,2))

Fig. 1. Layer 1 grid construction
for a general decision set K .

1i

2i
D

2 ((4,4))

2

2

((3,3))

((3,3))

1 2

1

2

3 4

3

4 2 ((3,4))

2 ((4,3))

2 ((4,3))

2 ((3,4))

Fig. 2. Index set for overlapped
sub-cubes when n = 2 and l = 2.

1i

2i
D

1 2

1

2

3 4

3

4

2 ((3,3))r

Fig. 3. Sampling for the case
when n = 2 andm = 2.

The notationKl (il) is used to represent the intersection of the decision setK and corresponding

sub-cube Dl (il), i.e.,

Kl (il)
def

= Dl (il) ∩ K .

By convention, we regard the decision set K as the only layer 0 subset, denoted by K0(1) = K .

By the above partitioning structure, in total 2
nl

subsets at layer l are constructed, whose union is

the decision set K . Note that there could be some empty subsets, and we denote the index set for

nonempty layer l subsets by Il , i.e.,

Il
def

= {il : Kl (il) , ∅}.

Any subset indexed by il ∈ Il , i.e., Kl (il), consists of a group of neighboring lower-layer subsets.

Specifically, for any s > l , we have

Kl (il) =
⋃

is : is , j ≥ 1 + (il , j − 1)2s−l ,

is , j ≤ il , j2
s−l ,

j = 1, 2, . . . ,n.

Ks (is).

To ease the presentation, we define the following notation:

▷We use Es (Kl (il)) , s ≥ l , to denote the index set of nonempty layer s subsets within Kl (il),
i.e.,

Es (Kl (il))
def

=
{
is ∈ Is : 1 + (il , j − 1)2s−l ≤ is , j ≤ il , j2

s−l , j = 1, 2, . . . ,n
}
. (3)

Indeed, we have |Es (Kl (il)) | ≤ 2
(s−l)n

.

▷ Assume il ∈ Il and s ≤ l . We use vs (il) to denote an index for some layer s subset, and the

elements ofvs (il) satisfy

vs , j =

⌈
il , j

2
l−s

⌉
, j = 1, 2, . . . ,n.

Due to the above definition ofvs (il), il ∈ Il , together with the grid construction method we adopt,

it follows that Kl (il) ⊂ Ks (vs (il)).
Example 1. Fig. 1 illustrates a simple example of grid construction when n = 2 and l = 1. At

layer 1, the cover cube D is partitioned into four smaller sub-cubes, each of whom intersects the

decision set K , forming four nonempty subsets, respectively.

I1 = {(1, 1), (1, 2), (2, 1), (2, 2)} .

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 2, Article 25. Publication date: June 2018.

An Optimal Algorithm for Online Non-Convex Learning 25:7

In Fig. 2, the subsets at layer 1 are further divided and 14 fixed nonempty layer 2 subsets

are constructed. Particularly, the subset K1((2, 2)) contains three nonempty layer 2 subsets, i.e.,

K2((3, 3)), K2((3, 4)), and K2((4, 3)). Thus, we have

E2 (K1((2, 2))) = {(3, 3), (3, 4), (4, 3)} .

According to the definition ofvs (il), we have

v1((3, 3)) = v1((3, 4)) = v1((4, 3)) = (2, 2),

and K2((3, 3)) ⊂ K1((2, 2)),K2((3, 4)) ⊂ K1((2, 2)), and K2((4, 3)) ⊂ K1((2, 2)).

3.2 Sampling
Assuming layer 0 contains the original decision set K , we fix the number of layers to bem + 1,

where layerm contains at most 2
nm

nonempty subsets. In the sampling procedure, a sample point,
rm(im), is selected randomly as a representative, from each nonempty subset Km(im) at layerm.

Fig. 3 depicts a simple example for n = 2 andm = 2, where the sample points are colored in blue.

Due to the bijective correspondence between the sample points and the subsets at layerm, we

interchangeably use choosing a sample point from a subset and choosing the corresponding layer

m subset.

In Section 3.3, we define a recursive, probabilistic algorithm to select subsets as we go down the

layered structure. Correspondingly, this defines a probabilistic approach to choose a decision point
from the sample points as the final decision of the ORW algorithm.

Once the decision point is selected at each iteration, the cost of the decision, ft (rm(im)), along
with the function ft will be revealed.

For notation convenience, we denote the cost of the sample point from the layer m subset,

Km(im), im ∈ Im , at iteration t by cm,t (im), i.e.,

cm,t (im)
def

= ft (rm(im)).

Note that by this sample point construction step, the proposed algorithm reduces the original

problem in principle to an Expert problem with |Im | experts. As compared to the classic setting of

the Expert problem in [8], the difference is that the cost function in our problem is a non-convex

L-Lipschitz continuous one. Finally, the following lemma characterizes the cost difference between

two sample points.

Lemma 3.1. Assume p,q ∈ Im , we have

|cm,t (p) − cm,t (q)| ≤ 2Lm | |p − q | |1,

where Lm =
√
nDL/(2m) and | |p − q | |1 =

∑n
j=1

|pj − qj |.

Proof. The maximum distance between two points within a subset at layer m is

√
nD/(2m).

Considering the Lipschitz continuous condition, the maximum cost difference within the same

subset at layerm is Lm =
√
nDL/(2m). We require that, any two subsets of the same layer, p and q,

are said to be neighboring subsets if their coordinates satisfy pj − qj ≤ 1 for j = 1, 2, . . . ,n. Then,
the maximum cost difference of two points in the union of any two neighboring layerm subsets is

2

√
nDL/(2m). Thus, the maximum distance for any two points in the union of two layerm subsets,

p and q, is 2

√
nDL/(2m)| |p − q | |1. This yields the result in Lemma 3.1. □

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 2, Article 25. Publication date: June 2018.

25:8 Lin Yang, Lei Deng, Mohammad H. Hajiesmaili, Cheng Tan, and Wing Shing Wong

3.3 Recursive Choosing Policy
In this subsection, we propose a novel recursive decision structure to determine the index point for

the bottom-layer subset over the index set Im .

At iteration t , t = 1, 2, . . . ,T , the final choice of the ORW algorithm is obtained by recursively

choosing a nonempty subset from the topmost layer (l = 0) to the bottommost layer (l = m). In

this way, the action of the ORW algorithm at each iteration t , consists of a sequence of indexes of
subsets, i.e., (I0,t , I1,t , I2,t , . . . , Im,t). By default, I0,t is set to be 1, referring to the only decision

set K . Additionally, Il ,t should satisfy that Il ,t ∈ El (Kl−1(Il−1,t)), i.e., Kl (Il ,t) ⊂ Kl−1(Il−1,t) for

l = 1, 2, . . . ,m.

At each layer, a stochastic policy is adopted to select a lower-layer subset. Suppose that, at

iteration t and at layer l , 0 ≤ l < m, the ORW algorithm has chosen subset il ∈ Il , i.e., Il ,t = il .
Then, the algorithm proceeds to choose a subset at the next layer (layer (l + 1)) in Kl (il) randomly

according to a conditional probability.

In the ORW algorithm, and for il+1 ∈ El+1(Kl (il)), the conditional probability, Pr
t
l ,l+1

=

Pr

[
Il+1,t = il+1 |Il ,t = il

]
, is based on the cumulative expected cost of the previous iterations.

For iteration τ , 0 ≤ τ ≤ t −1, the expected normalized cost of subsetKl (il), denoted by c̄l+1,τ (il+1),

is defined as follows

c̄l ,τ (il)
def

=E

cm,τ (Im,τ) − min

im ∈Q
cm,τ (im)

2
m−l+1Lm

|Il ,τ = il

=

∑
jm ∈Em (Kl (il))

cm,τ (jm)− min

im ∈Q
cm,τ (im)

2
m−l+1Lm

· Pr

[
Im,τ = jm |Il ,τ = il

]
,

(4)

where Q = Em(Kl−1(vl−1(il))). Note that c̄l+1,τ (il+1) can be computed at the end of iteration τ ,
once the cost function is revealed. In Equation (4), the conditional selection probability for subset

jm ∈ Im , i.e., Pr

[
Im,τ = jm |Il ,τ = il

]
can be obtained by multiplying the selection probabilities of

the corresponding subsets at each layer, i.e.,

Pr

[
Im,τ = jm |Il ,τ = il

]
=

m−1∏
k=l

Pr

[
Ik+1,τ = vk+1(Km(jm))|Ik ,τ = vk (Km(jm))

]
. (5)

For a subset Kl (il), the cumulative expected cost, denoted by C̄l ,t (il), is defined as the sum of the

expected normalized cost from iteration 1 to iteration t , i.e.,

C̄l ,t (il)
def

=

t∑
τ=1

c̄l ,τ (il). (6)

By convention, let the initial value of the cumulative expected cost be zero, i.e., C̄l ,0(il) = 0 for all

il ∈ Il and for any layer l = 1, 2, · · · ,m.

At iteration t , the selection probability, Pr

[
Il+1,t = il+1 |Il ,t = il

]
, is proportional to the exponent

of the expected cumulative cost of choosing subset il+1 at layer (l + 1) up to iteration t − 1, i.e.,

Pr

[
Il+1,t = il+1 |Il ,t = il

]
=

exp

(
−ηtC̄l+1,t−1(il+1)

)∑
i ′l+1

∈El+1
(Kl (il))

exp

(
−ηtC̄l+1,t−1(i

′
l+1

)

) ,
(7)

where ηt is a positive and decreasing parameter which implies that the changing on C̄(.) has
decreasing influence on the choosing probability and thus the decision of the online algorithm gets

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 2, Article 25. Publication date: June 2018.

An Optimal Algorithm for Online Non-Convex Learning 25:9

Algorithm 1 The Online Recursive Weighting (ORW) Algorithm

Input: index set Im , T , {ηt =
√n

t }

Output: rm(Im,1), rm(Im,2), . . .
1: //↑ Output sample points of layer m subsets
2: //↓ Initialize the cumulative expected cost for all subsets at all layers
3: Set C̄l ,0(il) = 0,∀il ∈ Il , l = 1, 2, . . . ,m
4: for t = 1, 2, . . . ,T do
5: I0,t = 1
6: //↓ Recursively select subsets at all layers
7: for l = 0, 1, . . . ,m − 1 do
8: Randomly select an index Il+1,t ∈ El+1(Kl (Il ,t)) according to the probability distribution

specified in Equation (7)

9: end for
10: Choose the subset indexed by Im,t at iteration t
11: Choose the sample point for subset Km

(
Im,t

)
, i.e., rm(Im,t), as the final decision

12: //↓ Get the normalized expected cost for all subsets at all layers based
on the revealed cost function ft (x) at iteration t

13: for l = 1, 2, . . . ,m do
14: for il ∈ Il do
15: for jm ∈ Em(Kl (il)) do
16: Calculate Pr

[
Im,t = jm |Il ,t = il

]
according to

Equation (5)

17: end for
18: Calculate c̄l ,t (il) according to Equation (4)

19: Update C̄l ,t (il) = C̄l ,t−1(il) + c̄l ,t (il)
20: end for
21: end for
22: end for

more unalterable as time goes on. Note that the denominator in Equation (7) is a normalizer such

that right hand side of Equation (7) is a probability mass function.

Note that the ORW algorithm updates the cumulative expected cost at the end of each iteration.

Once the conditional probabilities are defined and the cost function at iteration t is revealed, we
then calculate the expected normalized cost and further update the cumulative expected cost for

each subset, which is

C̄l ,t (il) = C̄l ,t−1(il) + c̄l ,t (il). (8)

Then, the updated cumulative expected cost will be used to calculate the choosing probability at

the next iteration as shown in Equation (7). The summary of the proposed ORW algorithm is listed

as Algorithm 1.

Remark 1. (Technical differences with the traditional weightingmethods) For the expert learning

problem, the intuitive idea to attain a sublinear regret is to allocate more preference to the expert

of smaller cumulative cost in a stochastic manner [34], which can be realized by the Exponential

Weighting algorithm (or Hedge algorithm). The Hedge algorithm observes the costs on each point,

and updates the weight of a point based on its own cost only. Such a point-by-point weighting

method fails in utilizing the cost correlation among neighboring decision nodes and attains only

sub-optimal performance within continuum decision space which could consist of infinitely many

decision points. Than the Hedge algorithm, the ORW algorithm makes better use of the correlation

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 2, Article 25. Publication date: June 2018.

25:10 Lin Yang, Lei Deng, Mohammad H. Hajiesmaili, Cheng Tan, and Wing Shing Wong

of neighboring points by grouping highly correlated decision points as a high-level decision. As

expressed in Equation (4), a common evaluation is conducted for each decision group, and a

particular amount of common preference will be allocated to the group based on its cumulative

performance. Furthermore, by constructing a tree decision structure, the ORW algorithm chooses

among at most 2
n
“experts” or decision points at each layer, avoiding the performance degradation

due to the large number of decision points that the Hedge algorithm might have been faced with.

4 REGRET ANALYSIS FOR THE ONLINE RECURSIVE WEIGHTING ALGORITHM
Since the ONCL problem is a more general model than the OCO, the lower bound for the OCO is

still valid for the non-convex case. In the OCO framework, a well-known lower bound of the regret

is Ω(
√
T), and the reader can refer to [18] for the sketch of the proof. In this section, we analyze

the regret of the ORW algorithm (represented by R in equations) and demonstrate it matches the

above lower bound. The main technical results are summarized in the following theorem.

Theorem 4.1. With ηt =
√n

t , the ORW algorithm guarantees that

regretT (R) ≤ 2(ln 2 + 1)nDL
√
T + 2 ln 2 · nDL +

√
n

2
m DLT .

Ifm is further set to ⌈log
2

√
nT ⌉, it follows that

regretT (R) < (4n + 1)DL
√
T + 2nDL.

Remark 2. (Dimensional dependency) Theorem 4.1 implies that the ORW algorithm attains a

regret ofO(n
√
T), with a mild polynomial dependency on the dimension. Note that the regret of the

Hedge algorithm on a continuum [31] has dimension dependency and is shown to be O(
√
nT logT

(see Corollary 2 in [31]), which has a milder dependency on the dimension as compared to our

algorithm. This milder dependency is due to an additional assumption on the cost function in [31]

to be always bounded by a constant no matter how large the dimension is. In our setting, we do

not have such assumption on cost functions, and the regret is O(n
√
T).

Remark 3. [31] shows that when the decision set is uniformly fat, the Hedge algorithm can

attain a regret of O(
√
T logT). An additional advantage of our ORW algorithm is that the only

assumption on decision set is that it is bounded.

To carry out the analysis, we split the regret analysis of the ORW algorithm into two parts:

▷ The first part is the regret due to the “imperfect choice” among sample points, i.e.,

regretImC,T (R)
def

= sup

f1 , ...,fT ∈F

{∑
t ∈T

E
[
cm,t (Im,t)

]
− min

im ∈Im

∑
t ∈T

cm,t (im)

}
,

where the first term is the cumulative cost incurred by the online algorithm (whose choice at

iteration t is denoted by Im,t), and the second term is the minimum cumulative cost among sampled

points.

▷ The second part of the regret is introduced by “imperfect discretization”, which is expressed as

regretImD,T (R)
def

= sup

f1 , ...,fT ∈F

{
min

im ∈Im

∑
t ∈T

cm,t (im) − min

x ∈K

∑
t ∈T

ft (x)

}
,

where the second term is the minimum cumulative cost over the decision set K . Since the supreme

of sum is less than or equal to the sum of supreme, we have the following lemma.

Lemma 4.2. regretT (R) ≤ regretImC,T (R) + regretImD,T (R).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 2, Article 25. Publication date: June 2018.

An Optimal Algorithm for Online Non-Convex Learning 25:11

In the following lemma, we derive a bound for the first-part regret of the ORW algorithm,

which is related to the subproblem of choosing a point over the set Im . The regret analysis for the

imperfect discretization is given in Lemma 4.4.

Lemma 4.3. With ηt =
√n

t , the ORW algorithm guarantees that

regretImC,T (R) ≤ 2(ln 2 + 1)nDL
√
T + 2 ln 2 · nDL.

Proof. The ORW algorithm has a recursive decision-making structure to determine the final

decision. Correspondingly, the regret due to “imperfect choice” can be further splited into multiple

pieces which are introduced at each layer.

Suppose a nonempty subset Kl (il) is chosen at layer l ∈ {0, 1, 2, . . . ,m − 1}. In the next step,

the ORW algorithm will further choose a subset whose index lies in El+1(Kl (il)). Among the

subsets of Kl (il), there exists a local optimal subset (for example, i ′′l+1
), whose performance is

known in hindsight and potentially a regret loss due to imperfect choice at layer l will be in-

curred by the online algorithm. Equation (9) bounds such cost difference (or regret loss) between∑
t ∈T E[cm,t (Im,t)|Il ,t = il] and

∑
t ∈T E

[
cm,t (Im,t)|Il+1,t = i

′′
l+1

]
at the l-th layer, where i ′′l+1

is

any element in El+1(Kl (il)).
In Equation (9), equality (E1) is obtained simply by the law of total probability. Equality (E2) is

due to the definition of c̄l+1,t (il+1) in (4) . Equality (E3) is based on the conditional probability in

(7). Inequality (E4) is due to the following inequality,∑
il+1

∈El+1
(Kl (il)

exp

(
−ηtC̄l+1,t−1(il+1)

)
· c̄l+1,t (il+1)∑

i ′l+1
∈El+1

(Kl (il))
exp

(
−ηtC̄l+1,t−1(i

′
l+1

)

)
≤ −

1

ηt
ln

∑
il+1

∈El+1
(Kl (il))

exp

(
−ηtC̄l+1,t−1(il+1)

)
· exp(−ηt c̄l+1,t (il+1))∑

i ′l+1
∈El+1

(Kl (il))
exp

(
−ηtC̄l+1,t−1(i

′
l+1

)

) +
ηt
2

. (10)

The proof of Equation (10) is given in Appendix A.1. Equality (E5) is due to the fact that C̄l+1,t (il+1) =

C̄l+1,t−1(il+1) + c̄l+1,t (il+1). Equality (E6) simplifies the expression for the log-sum-exp function by

defining

Φt (α)
def

= −
1

α
ln

∑
il+1

∈El+1
(Kl (il))

exp

(
−αC̄l+1,t (il+1)

)
,

where α > 0. Equality (E7) rearranges the first set of terms and Inequality (E8) uses the following

bound result

T−1∑
t=1

[Φt (ηt) − Φt (ηt+1)] ≤

T−1∑
t=1

n

(
1

ηt+1

−
1

ηt

)
≤ ln 2 ·

√
nT , (11)

which is proved in Appendix A.2. Inequality (E9) entails the following two results:

− Φ0(η1) =
1

η1

ln |El+1(Kl (il))| =
1

√
n

ln |El+1(Kl (il))| ≤
1

√
n

ln 2
n ≤ ln 2 ·

√
n,

and

T∑
t=1

ηt
2

<

T∑
t=1

√
n(√

t − 1 +
√
t
) = T∑

t=1

√
n ·

(√
t −

√
t − 1

)
=
√
n ·

(√
T − 1

)
≤
√
nT .

(12)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 2, Article 25. Publication date: June 2018.

25:12 Lin Yang, Lei Deng, Mohammad H. Hajiesmaili, Cheng Tan, and Wing Shing Wong

∑
t∈T

E[cm ,t (Im ,t) |Il ,t = il]

(E1)
=

∑
t∈T

∑
il+1

∈El+1
(Kl (il))

Pr[Il+1,t = il+1
|Il ,t = il] · E

[
cm ,t (Im ,t) |Il+1,t = il+1

]
(E2)
=

∑
t∈T

∑
il+1

∈El+1
(Kl (il))

Pr[Il+1,t = il+1
|Il ,t = il] ·

[
c̄l+1,t (il+1

) · 2
m−l Lm + min

im ∈Em (Kl (il))
cm ,t (im)

]

=
∑
t∈T

∑

il+1∈El+1(Kl (il))

Pr[Il+1,t =il+1
|Il ,t =il] · c̄l+1,t (il+1

) · 2
m−l Lm +

∑
il+1∈El+1(Kl (il))

Pr[Il+1,t =il+1
|Il ,t =il] · min

im ∈Em (Kl (il))
cm ,t (im)

=

∑
t∈T

∑

il+1
∈El+1

(Kl (il))

Pr[Il+1,t = il+1
|Il ,t = il] · c̄l+1,t (il+1

) · 2
m−l Lm + min

im ∈Em (Kl (il))
cm ,t (im)

(E3)
=

∑
t∈T

∑

il+1
∈El+1

(Kl (il))

exp

(
−ηt C̄l+1,t−1

(il+1
)
)∑

i′l+1

∈El+1
(Kl (il))

exp

(
−ηt C̄l+1,t−1

(i ′l+1
)

) · c̄l+1,t (il+1
)

︸ ︷︷ ︸
See (10), which is proved in Appendix A.1

· 2
m−l Lm +

∑
t∈T

min

im ∈Em (Kl (il))
cm ,t (im)

(E4)

≤
∑
t∈T

−

1

ηt
ln

∑
il+1

∈El+1
(Kl (il))

exp

(
−ηt C̄l+1,t−1

(il+1
)
)
· exp

(
−ηt c̄l+1,t (il+1

)
)∑

i′l+1

∈El+1
(Kl (il))

exp

(
−ηt C̄l+1,t−1

(i ′l+1
)

) +
ηt
2

︸ ︷︷ ︸
See (10), which is proved in Appendix A.1

· 2
m−l Lm + min

im ∈Em (Kl (il))
cm ,t (im)

(E5)
=

∑
t∈T

−

1

ηt
ln

∑
il+1

∈El+1
(Kl (il))

exp

(
−ηt C̄l+1,t (il+1

)
)∑

i′l+1

∈El+1
(Kl (il))

exp

(
−ηt C̄l+1,t−1

(i ′l+1
)

) + ηt
2

· 2
m−l Lm +

∑
t∈T

min

im ∈Em (Kl (il))
cm ,t (im)

(E6)
=

∑
t∈T

[
Φt (ηt) − Φt−1(ηt) +

ηt
2

]
· 2
m−l Lm +

∑
t∈T

min

im ∈Em (Kl (il))
cm ,t (im)

(E7)
=

{
ΦT (ηT) +

T−1∑
t=1

(Φt (ηt) − Φt (ηt+1))︸ ︷︷ ︸
See (11) which is proved in Appendix A.2

− Φ0(η1) +

T∑
t=1

ηt
2

}
· 2
m−l Lm +

∑
t∈T

min

im ∈Em (Kl (il))
cm ,t (im)

(E8)

≤

{
ΦT (ηT) + ln 2 ·

√
nT − Φ0(η1) +

T∑
t=1

ηt
2

}
︸ ︷︷ ︸

See (11) which is proved in Appendix A.2

· 2
m−l Lm +

∑
t∈T

min

im ∈Em (Kl (il))
cm ,t (im)

(E9)

≤

{
ΦT (ηT) + ln 2 ·

√
nT + ln 2 ·

√
n +

√
nT

}
· 2
m−l Lm +

∑
t∈T

min

im ∈Em (Kl (il))
cm ,t (im)︸ ︷︷ ︸

See (13) which is proved in Appendix A.3

(E10)

≤

{∑
t∈T

E

[
cm ,t (Im ,t) − minim ∈Em (Kl (il)) cm ,t (im)

2
m−l Lm

|Il+1,t = i
′′
l+1

]
︸ ︷︷ ︸

See (13) which is proved in Appendix A.3

+ (ln 2 + 1)
√
nT + ln 2 ·

√
n

}
· 2
m−l Lm +

∑
t∈T

min

im ∈Em (Kl (il))
cm ,t (im)

(E11)
=

∑
t∈T

E
[
cm ,t (Im ,t) |Il+1,t = i

′′
l+1

]
+

(
(ln 2 + 1)

√
nT + ln 2 ·

√
n
)
· 2
m−l Lm

(E12)
=

∑
t∈T

E
[
cm ,t (Im ,t) |Il+1,t = i

′′
l+1

]
+

(
(ln 2 + 1)nDL

√
T + ln 2 · nDL

)
︸ ︷︷ ︸

Denoted as ϕ

·
1

2
l
, ∀i ′′l+1

∈ El+1
(Kl (il))

(9)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 2, Article 25. Publication date: June 2018.

An Optimal Algorithm for Online Non-Convex Learning 25:13

Inequality (E10) is due to the following inequality

ΦT (ηT) ≤
∑
t ∈T

E

cm,t (Im,t) − min

im ∈Em (Kl (il))
cm,t (im)

2
m−lLm

|Il+1,t = i
′′
l+1

 , (13)

which is proved in Appendix A.3. Equality (E11) combines the first term and the last term. Equality

(E12) follows from the fact that Lm =
√
nDL/2

m
.

For any cost functions (f1, f2, · · · , fT), let i∗m be the index of the sample point with the smallest

cumulative cost, i.e.,

i∗m
def

= arg minim ∈Im

∑
t ∈T

cm,t (im).

By repeatedly applying the result in Equation (9), we have∑
t ∈T

E[cm,t (Im,t)] − min

im ∈Im

∑
t ∈T

cm,t (im)

=
∑
t ∈T

E[cm,t (Im,t)|I0,t = 1] −
∑
t ∈T

cm,t (i
∗
m)

≤
∑
t ∈T

E
[
cm,t (Im,t)|I1,t = v1(i

∗
m)

]
+ ϕ ·

1

2
0
−

∑
t ∈T

cm,t (i
∗
m)

≤
∑
t ∈T

E
[
cm,t (Im,t)|I2,t = v2(i

∗
m)

]
+ ϕ ·

1

2
1
+ ϕ ·

1

2
0
−

∑
t ∈T

cm,t (i
∗
m)

...

≤
∑
t ∈T

E
[
cm,t (Im,t)|Im,t = vm(i

∗
m)

]
+ ϕ ·

(
1

2
m−1
+ · · ·

1

2
0

)
−

∑
t ∈T

cm,t (i
∗
m)

=ϕ ·

(
1

2
m−1
+ · · ·

1

2
0

)
= 2ϕ ·

[
1 −

1

2
m

]
≤ 2ϕ .

(14)

Since (14) holds for any cost functions (f1, f2, · · · , fT), we have

regretImC,T (R) ≤ 2ϕ = 2(ln 2 + 1)nDL
√
T + 2 ln 2 · nDL.

This completes the proof. □

Remark 4. At each layer, the ORW algorithm chooses among at most 2
n
subsets. Moreover, due

to the Lipschitz condition, the expected normalized cost difference among subsets to be chosen

at each layer decreases exponentially as the algorithm goes down. These two facts result in the

exponentially decreasing of the regret loss due to “imperfect choice” at each layer. This is also

implied by Equation (9) in the proof of Lemma 4.3. Thus , the total regret loss of “imperfect choice” ,

regretImC,T is always upper bounded by O(
√
T) in timescale, no matter how many layers there are.

Moreover, the regret loss due to imperfect discretization can be reduced with largerm. Now, we

state the the following lemma.

Lemma 4.4. The ORW algorithm guarantees that

regretImD,T (R) ≤

√
n

2
m DLT .

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 2, Article 25. Publication date: June 2018.

25:14 Lin Yang, Lei Deng, Mohammad H. Hajiesmaili, Cheng Tan, and Wing Shing Wong

Proof. For any cost functions (f1, f2, . . . , fT), let

x∗ def

= arg minx ∈K

∑
t ∈T

ft (x).

Suppose that layerm subset containing x∗
is indexed by i∗m . The sample point for subset Km(i∗m) is

rm(i∗m) ∈ K . Clearly, rm(i∗m) = (r1, r2, . . . , rn) and x∗ = (x1, x2, . . . , xn) are in the same sub-cube

whose edge length is
D

2
m . Thus, we have

| |rm(i
∗
m) − x∗ | |2 =

√
(r1 − x1)

2 + (r2 − x2)
2 + · · · (rn − xn)2

≤

√(
D

2
m

)
2

+

(
D

2
m

)
2

+ · · · +

(
D

2
m

)
2

=
D
√
n

2
m .

Then, we have

min

im ∈Im

∑
t ∈T

cm,t (im) − min

x ∈K

∑
t ∈T

ft (x)

≤
∑
t ∈T

cm,t (i
∗
m) −

∑
t ∈T

ft (x
∗)

=
∑
t ∈T

ft (rm(i
∗
m)) − ft (x

∗) ≤ TL| |rm(i
∗
m) − x∗ | |2 ≤

√
n

2
m DLT ,

(15)

where the first inequality is due to the Lipschitz condition. Since (15) holds for any cost functions

(f1, f2, · · · , fT), we conclude that regretImD,T (R) ≤
√
n

2
mDLT . This completes the proof. □

Putting together the results in lemmas 4.2, 4.3, and 4.4, the results in Theorem 4.1 is proved.

5 ADAPTIVE SAMPLING
The ORW algorithm described in Section 3, specifies a granularity parameter, m, and samples

the costs at the bottommost layer (layerm). Withm larger than log
2

√
nT , the ORW algorithm

guarantees the regret to be O(
√
T). In many cases, however, the duration interval is long and

unknown to the online player, and setting a largem to guarantee O(
√
T) regret might be costly to

compute. In order to handle cases with unknown T and reduce this complexity, in this section, we

devise an adaptive version of the ORW algorithm (called the AORW algorithm), which increases

the granularity parameter gradually. The AORW algorithm is denoted by Radpt
in equations.

5.1 Online Recursive Weighting Algorithm with Adaptive Sampling
The AORW algorithm adopts an increasing granularity parametermt . We denote the time interval

that satisfiesmt ≥ l as Tl or [tl ,T]. With increasingmt , the index and the index set for the sampling

subsets are updated to the new notation, imt and Imt , respectively. rmt (imt) is used to denote the

sample point for the subset of index imt , and the cost on the sampled point of the subset imt ∈ Imt

at iteration t is denoted as

c ′mt ,t (imt)
def

= ft (rmt (imt)).

The AORW algorithm maintains the cumulative expected cost, C̄ ′
l ,t (il), for each subset at layers

{1, 2, . . . ,mt }. The cumulative expected cost is initialized to be zero, i.e., C̄ ′
l ,0(il) = 0. During run

time, the cumulative expected cost is used to determine the choosing probability of subsets at layers

{1, 2, . . . ,mt }. The selection probability for the subset Kl+1(il+1) conditioning on that Kl (il) has

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 2, Article 25. Publication date: June 2018.

An Optimal Algorithm for Online Non-Convex Learning 25:15

c̄ ′l ,t (il)
def

=E

cmt ,t (Imt ,t) − min

imt ∈Emt (Kl−1
(vl−1

(il)))
cmt ,t (imt)

2
mt−l+1Lmt

|Il ,t = il

=

∑
jmt ∈Emt (Kl (il))

cmt ,t (jmt)− min

imt ∈Emt (Kl−1
(vl−1

(il)))
cmt ,t (imt)

2
mt−l+1Lmt

· Pr

[
Imt ,t = jmt |Il ,t = il

]
.

(17)

been selected is

Pr

[
Il+1,t = il+1 |Il ,t = il

]
=

exp

(
−ηtC̄

′
l+1,t−1

(il+1)

)
∑

i ′l+1
∈El+1

(Kl (il))
exp

(
−ηtC̄

′
l+1,t−1

(i ′l+1
)

) .
(16)

Since there is a subset at each layer chosen in a recursive manner from the top layer to the

bottom layer, the action sequence of the AORW algorithm at iteration t can be correspondingly

denoted by a vector, (I0,t , I1,t , I0,t , . . . , Imt ,t), where I0,t is set to be 1 by default.

After the costs on the sampled points of the bottom-layer subsets are revealed, the AORW
algorithm calculates the expected normalized cost for each subset at layers {1, 2, . . . ,mt }, which is

defined in Equation (17).

Then, the calculated expected normalized cost is used to update the cumulative expected cost, i.e.,

C̄ ′
l ,t (il) = C̄

′
l ,t−1

(il) + c̄
′
l ,t (il). (18)

For the case whenmt+1 =mt + 1, the AORW algorithm will add the cumulative expected cost

for those subsets at the new layer to maintenance, with previous values over [1, tmt+1
− 1] set to be

0, i.e.,

c̄ ′mt+1 ,τ (imt+1
) = 0, for τ = 0, 1, 2, . . . , tmt+1

− 1.

The summary of the AORW algorithm is listed in Algorithm 2.

5.2 Regret Analysis
By adaptive sampling, the algorithm parameter does not depend on the length of time interval.

Meanwhile, an interesting result of the regret analysis is that adaptive sampling does not degrade

the regret bound. We state the main result in the following theorem.

Theorem 5.1. With ηt =
√n

t andmt being set to
⌈
log

2

√
nt

⌉
, the AORW algorithm achieves the

following regret bound

regretT (R
adpt) ≤

(
6n + 2

√
n
)
DL

√
T .

Let i∗mt
, t ∈ T indicate the bottom subset that contain the optimal decision point x∗

at iteration

t , i.e.,

i∗mt
: x∗ ∈ Kmt (i

∗
mt

), t ∈ T .

Similar to the regret analysis in Section 4, we define the regret due to the imperfect choice among

sample points as

regretImC,T (R
adpt)

def

= sup

f1 , ...,fT ∈F

{∑
t ∈T

E
[
c ′mt ,t (Imt ,t)

]
−

∑
t ∈T

c ′mt ,t (i
∗
mt

)

}
,

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 2, Article 25. Publication date: June 2018.

25:16 Lin Yang, Lei Deng, Mohammad H. Hajiesmaili, Cheng Tan, and Wing Shing Wong

and that due to the imperfect sampling as

regretImD,T (R
adpt)

def

= sup

f1 , ...,fT ∈F

{∑
t ∈T

c ′mt ,t (i
∗
mt

) − min

x ∈K

∑
t ∈T

ft (x)

}
.

Similar to Lemma 3.1, we have

regretT (R
adpt) ≤ regretImC,T (R

adpt) + regretImD,T (R
adpt).

In the following two lemmas, we bound the regret loss due to imperfect choice and sampling,

respectively.

Lemma 5.2. With ηt =
√n

t and themt =
⌈
log

2

√
t
⌉
, the AORW algorithm guarantees that

regretImC,T (R
adpt) ≤ 6DLn

√
T .

The proof of Lemma 5.2 is analogous to that of Lemma 4.3. The details are given in Appendix A.4.

Lemma 5.3. Withmt =
⌈
log

2

√
t
⌉
, the AORW algorithm guarantees that

regretImD,T (R
adpt) ≤ 2DL

√
nT .

Proof. For any cost functions (f1, f2, · · · , fT), let

x∗ def

= arg minx ∈K

∑
t ∈T

ft (x).

Suppose that the bottom subset containing point x∗
is indexed by i∗mt

, whose sample point is

rmt (i
∗
mt

) ∈ K . Clearly, rmt (i
∗
mt

) = (rmt ,1, rmt ,2, · · · , rmt ,n) and x∗ = (x1, x2, · · · , xn) are in the

same sub-cube whose edge length is
D

2
mt . Thus, we have

| |rmt (i
∗
mt

) − x∗ | |2 =

√
(rmt ,1 − x1)

2 + (rmt ,2 − x2)
2 + · · · (rmt ,n − xn)2

≤

√(
D

2
mt

)
2

+

(
D

2
mt

)
2

+ · · · +

(
D

2
mt

)
2

=
D
√
n

2
mt

≤D

√
n

t
.

Then we have ∑
t ∈T

c ′mt ,t (i
∗
mt

) − min

x ∈K

∑
t ∈T

ft (x) =
∑
t ∈T

c ′mt ,t (i
∗
mt

) −
∑
t ∈T

ft (x
∗)

=
∑
t ∈T

ft (rm(i
∗
m)) − ft (x

∗)

(E1)

≤ L
∑
t ∈T

| |rmt (i
∗
mt

) − x∗ | |2 ≤ 2DL
√
nT ,

(19)

where inequality (E1) is due to the Lipschitz condition. Since (19) holds for any cost functions

(f1, f2, · · · , fT), we conclude that regretImD,T (R) ≤ 2DL
√
nT . This completes the proof. □

The results in lemmas 5.2 and 5.3 immediately prove the results in Theorem 5.1.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 2, Article 25. Publication date: June 2018.

An Optimal Algorithm for Online Non-Convex Learning 25:17

Algorithm 2 Recursive Weighting with Adaptive Sampling

Input: {ηt =
√n

t },
{
mt =

⌈
log

2

√
t
⌉}

Output: rm1
(Im1 ,1), rm2

(Im2 ,2), . . .
1: //↑ Output sample points of layer m subsets
2: //↓ Initialize the normalized expected cost for all subsets at all layers
3: Set C̄l ,0(il) = 0,∀il ∈ Il , l = 1, 2, . . . ,m1

4: for t = 1, 2, . . . ,T do
5: I0,t = 1
6: //↓ Recursively select the subsets at all layers
7: for l = 0, 1, . . . ,mt − 1 do
8: Select an index Il+1,t ∈ El+1(Il ,t) according to the probability distribution calculated in

Equation (16)

9: end for
10: Choose the subset indexed by Imt ,t at iteration t
11: Choose the sample point for subset Kmt

(
Imt ,t

)
, i.e., rmt (Imt ,t), as the final decision

12: //↓ Get the normalized expected cost for all subsets at all layers based
on the revealed cost function ft (x) at iteration t

13: for l = 1, 2, . . . ,mt do
14: for il ∈ Il do
15: for jmt ∈ Emt (Kl (il)) do
16: Calculate Pr

[
Im,t = jmt |Il ,t = il

]
according to

Equation (5)

17: end for
18: Calculate c̄l ,t (il) according to Equation (17)

19: Update C̄ ′
l ,t (il) = C̄

′
l ,t−1

(il) + c̄
′
l ,t (il)

20: end for
21: end for
22: //↓ Initialize the cumulative expected cost for all subsets at the new

layer
23: if mt+1 > mt then
24: for imt+1

∈ Imt+1
do

25: Set C̄ ′
mt+1 ,t (imt+1

) = 0

26: end for
27: end if
28: end for

6 EXTENSIONS AND STATE-OF-THE-ART RESULTS
6.1 Online Optimization in a Decentralized Environment
Recently, Hosseini [23] and Lee [33] generalized the classic OCO problem to a decentralized

optimization framework within a network of agents. In their work, consensus-based gradient-

descent algorithms were proposed for distributed online optimization. In their setting, each agent

aims to drive its individual average regret, which is the average over time of the regret function

evaluated at this agent’s estimation for the choice that the whole network should make, to zero.

An interesting message of their work is that the O(
√
T) regret can still be attained by leveraging

the communication among agents. In addition, [43] addresses decentralized online optimization in

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 2, Article 25. Publication date: June 2018.

25:18 Lin Yang, Lei Deng, Mohammad H. Hajiesmaili, Cheng Tan, and Wing Shing Wong

non-stationary environments using mirror decent, and in [4], distributed online optimization is

studied for strongly convex objective functions over time-varying networks.

In parallel, a promising future work for our approach is to implement the proposed weighting

method to solve the distributed ONCL problem. The extension is natural, while techniques to be

adopted might be rather different. That is due to the fact that the ORW algorithm has to maintain

an estimation for each subset and it might be very costly to exchange such information. Thus, in

the opinion of the authors, the main challenge to implement such a weighting method within a

decentralized environment is to alleviate the communication overhead among agents.

6.2 Partial Information Feedback
We emphasize that our online non-convex problem is based on full information feedback. That is, the
whole cost function will be revealed at the end of each iteration. It is an interesting and important

future direction to consider partial information feedback where only the cost value of the player’s

choice is revealed. The partial information feedback extension is motivated by many real-world

systems in which the observer is not co-located with the controller and the feedback information is

noisy, partial, or incomplete due to limited communication bandwidth. Some examples are online

routing in data networks [7], power control in cellular networks [48], and the ad placement problem

on a web page [47].

The bandit information feedback setting has been investigated in a huge number of works in the

OCO framework such as [1, 2, 11, 13, 21, 22, 41], which is called the Bandit Convex Optimization

(BCO) problem. Among those works, [1, 11, 13, 41] reported to attain a sublinear regret for the BCO

problem, respectively, but none of them have attained the lower bound of the regret. For the special

case of strongly convex and smooth losses, [2] obtained a regret of Õ(
√
T) in the unconstrained

case, and [21] obtained the same rate even in the constrained case. Recently, a new algorithm

was reported by Hazan et al. to attain a regret of (lnT)2d
√
T [22]. This is the first algorithm to

attain a Õ(
√
T) regret for the OCO model with bandit feedback. Different from the above works,

[3, 28–30, 38] studied the model where the (expected) payoff function satisfies a Lipschitz condition

with respect to the metric. [3, 30, 38] investigate this problem in a few specific metric spaces such

as a one-dimensional real interval, while in [28, 29], the action set is from a general metric space.

Their model is more general and the results in [29] show that there is an algorithm whose regret

on any instance satisfies R(T) = Õ(T
d+1

d+2), where d is the dimension of the action set.

Despite of the above results, the optimal online algorithm and tight regret bound for the online

non-convex optimization problem with bandit feedback are still open, calling for more investigation

from the community.

7 CONCLUSION
In this paper, we investigated the online non-convex learning problem, which removes the convexity

assumption of the cost function of the classic online convex optimization problem. This generaliza-

tion is necessitated by a huge amount of important applications which incurs non-convex penalties,

such as in portfolio selection and SVM training problems. Without the convexity assumption, it

is far more challenging to design an efficient online algorithm with sublinear regret. The classic

exponential weighting online algorithm is shown to attain a sublinear regret of O(
√
T logT) and

the convex optimization methods even fail to converge to the optimum. Our analysis prove that by

properly partitioning subsets and using the recursive weighting method, the regret can be reduced

to match the known lower bound for OCO, i.e., O(
√
T).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 2, Article 25. Publication date: June 2018.

An Optimal Algorithm for Online Non-Convex Learning 25:19

ACKNOWLEDGEMENT
The authors would like to thank the anonymous reviewers of SIGMETRICS 2018 for their insightful

comments and suggestions to improve the quality of the paper.

REFERENCES
[1] J. Abernethy, E. Hazan, and A. Rakhlin. Competing in the dark: An efficient algorithm for bandit linear optimization.

In COLT, pages 263–274, 2008.
[2] A. Agarwal, O. Dekel, and L. Xiao. Optimal algorithms for online convex optimization with multi-point bandit feedback.

In COLT, pages 28–40. Citeseer, 2010.
[3] R. Agrawal. The continuum-armed bandit problem. SIAM journal on control and optimization, 33(6):1926–1951, 1995.
[4] M. Akbari, B. Gharesifard, and T. Linder. Distributed online convex optimization on time-varying directed graphs.

IEEE Transactions on Control of Network Systems, 2015.
[5] D. Ardia, K. Boudt, P. Carl, K. M. Mullen, and B. Peterson. Differential evolution (deoptim) for non-convex portfolio

optimization. 2010.

[6] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. Schapire. The nonstochastic multiarmed bandit problem. SIAM journal on
computing, 32(1):48–77, 2002.

[7] B. Awerbuch and R. Kleinberg. Online linear optimization and adaptive routing. Journal of Computer and System
Sciences, 74(1):97–114, 2008.

[8] N. Cesa-Bianchi, Y. Freund, D. Haussler, D. P. Helmbold, R. E. Schapire, and M. K. Warmuth. How to use expert advice.

Journal of the ACM (JACM), 44(3):427–485, 1997.
[9] R. Combes, S. Magureanu, A. Proutiere, and C. Laroche. Learning to rank: Regret lower bounds and efficient algorithms.

ACM SIGMETRICS Performance Evaluation Review, 43(1):231–244, 2015.
[10] T. Cover. Universal portfolios. Mathematical finance, 1(1):1–29, 1991.
[11] O. Dekel, R. Eldan, and T. Koren. Bandit smooth convex optimization: Improving the bias-variance tradeoff. In Advances

in Neural Information Processing Systems (NIPS), pages 2926–2934, 2015.
[12] S. Ertekin, L. Bottou, and C. Giles. Non-convex online support vector machines. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 33(2):368–381, 2011.
[13] A. Flaxman, A. Kalai, and H. McMahan. Online convex optimization in the bandit setting: gradient descent without a

gradient. In Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms (SODA), pages 385–394,
2005.

[14] Y. Freund and R. E. Schapire. A desicion-theoretic generalization of on-line learning and an application to boosting. In

European conference on computational learning theory, pages 23–37. Springer, 1995.
[15] G. Gasso, L. Pappaioannou, M. Spivak, and L. Bottou. Batch and online learning algorithms for nonconvex neyman-

pearson classification. ACM Transactions on Intelligent Systems and Technology, 2(3):28, 2011.
[16] A. J. Grove, N. Littlestone, and D. Schuurmans. General convergence results for linear discriminant updates. Machine

Learning, 43(3):173–210, 2001.
[17] T. Guzella and W. Caminhas. A review of machine learning approaches to spam filtering. Expert Systems with

Applications, 36(7):10206–10222, 2009.
[18] E. Hazan. Introduction to online convex optimization. Foundations and Trends in Optimization, 2(3–4):157–325, 2016.
[19] E. Hazan and S. Kale. Online submodular minimization. Journal of Machine Learning Research, 13(Oct):2903–2922,

2012.

[20] E. Hazan and S. Kale. Beyond the regret minimization barrier: optimal algorithms for stochastic strongly-convex

optimization. Journal of Machine Learning Research, 15(1):2489–2512, 2014.
[21] E. Hazan and K. Levy. Bandit convex optimization: Towards tight bounds. In Advances in Neural Information Processing

Systems (NIPS), pages 784–792, 2014.
[22] E. Hazan and Y. Li. An optimal algorithm for bandit convex optimization. arXiv preprint arXiv:1603.04350.
[23] S. Hosseini, A. Chapman, and M. Mesbahi. Online distributed convex optimization on dynamic networks. IEEE

Transactions on Automatic Control, 61(11):3545–3550, 2016.
[24] P. Jain, B. Kulis, I. S. Dhillon, and K. Grauman. Online metric learning and fast similarity search. In Advances in neural

information processing systems, pages 761–768, 2009.
[25] A. Kalai and S. Vempala. Efficient algorithms for universal portfolios. Journal of Machine Learning Research, 3(Nov):423–

440, 2002.

[26] J. Kivinen and M. K. Warmuth. Relative loss bounds for multidimensional regression problems. In Advances in neural
information processing systems (NIPS), pages 287–293, 1998.

[27] R. Kleinberg and A. Slivkins. Sharp dichotomies for regret minimization in metric spaces. In Proceedings of the
twenty-first annual ACM-SIAM symposium on Discrete Algorithms, pages 827–846. Society for Industrial and Applied

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 2, Article 25. Publication date: June 2018.

25:20 Lin Yang, Lei Deng, Mohammad H. Hajiesmaili, Cheng Tan, and Wing Shing Wong

Mathematics, 2010.

[28] R. Kleinberg, A. Slivkins, and E. Upfal. Multi-armed bandits in metric spaces. In Proceedings of the fortieth annual ACM
symposium on Theory of computing, pages 681–690. ACM, 2008.

[29] R. Kleinberg, A. Slivkins, and E. Upfal. Bandits and experts in metric spaces. arXiv preprint arXiv:1312.1277, 2013.
[30] R. D. Kleinberg. Nearly tight bounds for the continuum-armed bandit problem. In Advances in Neural Information

Processing Systems, pages 697–704, 2005.
[31] W. Krichene, M. Balandat, C. Tomlin, and A. Bayen. The hedge algorithm on a continuum. In the 32nd International

Conference on Machine Learning (ICML-15), pages 824–832, 2015.
[32] P. Krokhmal, J. Palmquist, and S. Uryasev. Portfolio optimizationwith conditional value-at-risk objective and constraints.

Journal of risk, 4:43–68, 2002.
[33] S. Lee, A. Nedich, and M. Raginsky. Stochastic dual averaging for decentralized online optimization on time-varying

communication graphs. IEEE Transactions on Automatic Control, 2017.
[34] N. Littlestone and M. Warmuth. The weighted majority algorithm. Information and computation, 108(2):212–261, 1994.
[35] S. Magureanu, A. Proutiere, M. Isaksson, and B. Zhang. Online learning of optimally diverse rankings. Proceedings of

the ACM on Measurement and Analysis of Computing Systems, 1(2):32, 2017.
[36] O.-A. Maillard and R. Munos. Online learning in adversarial lipschitz environments. Machine Learning and Knowledge

Discovery in Databases, pages 305–320, 2010.
[37] L. Mason, P. L. Bartlett, and J. Baxter. Improved generalization through explicit optimization of margins. Machine

Learning, 38(3):243–255, 2000.
[38] S. Pandey, D. Agarwal, D. Chakrabarti, and V. Josifovski. Bandits for taxonomies: A model-based approach. In

Proceedings of the 2007 SIAM International Conference on Data Mining, pages 216–227. SIAM, 2007.

[39] A. Rakhlin, O. Shamir, and K. Sridharan. Making gradient descent optimal for strongly convex stochastic optimization.

In Proceedings of the 29th International Conference on Machine Learning (ICML-12), pages 449–456, 2012.
[40] H. Robbins and S. Monro. A stochastic approximation method. The annals of mathematical statistics, pages 400–407,

1951.

[41] A. Saha and A. Tewari. Improved regret guarantees for online smooth convex optimization with bandit feedback. In

AISTATS, pages 636–642, 2011.
[42] D. Sculley and G. Wachman. Relaxed online svms for spam filtering. In Proceedings of the 30th annual international

ACM SIGIR conference on Research and development in information retrieval, pages 415–422, 2007.
[43] S. Shahrampour and A. Jadbabaie. Distributed online optimization in dynamic environments using mirror descent.

IEEE Transactions on Automatic Control, 2017.
[44] O. Shamir and T. Zhang. Stochastic gradient descent for non-smooth optimization: Convergence results and optimal

averaging schemes. In International Conference on Machine Learning, pages 71–79, 2013.
[45] M. S. Talebi, Z. Zou, R. Combes, A. Proutiere, and M. Johansson. Stochastic online shortest path routing: The value of

feedback. IEEE Transactions on Automatic Control, 2017.
[46] S. Uryasev. Conditional value-at-risk: Optimization algorithms and applications. In Computational Intelligence for

Financial Engineering, 2000.(CIFEr) Proceedings of the IEEE/IAFE/INFORMS 2000 Conference on, pages 49–57. IEEE, 2000.
[47] F. Wauthier, M. Jordan, and N. Jojic. Efficient ranking from pairwise comparisons. In International Conference on

Machine Learning (ICML), pages 109–117, 2013.
[48] W. Wong and C. Sung. Robust convergence of low-data rate-distributed controllers. IEEE transactions on automatic

control, 49(1):82–87, 2004.
[49] H. H. Zhang, J. Ahn, X. Lin, and C. Park. Gene selection using support vector machines with non-convex penalty.

bioinformatics, 22(1):88–95, 2005.
[50] L. Zhang, T. Yang, R. Jin, and Z. Zhou. Online bandit learning for a special class of non-convex losses. In AAAI, pages

3158–3164, 2015.

[51] M. Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In Proceedings of the 20th
International Conference on Machine Learning (ICML), pages 928–936, 2003.

A PROOFS
A.1 Proof of Inequality (10)

The proof relies on the following Hoeffding’s Lemma.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 2, Article 25. Publication date: June 2018.

An Optimal Algorithm for Online Non-Convex Learning 25:21

Lemma A.1. (Hoeffding’s Lemma) Let Z be any real-valued random variable with expected value
E[Z] = 0 and such that a ≤ Z ≤ b almost surely. Then, for all λ ∈ R,

E [exp(λZ)] ≤ exp

(
λ2(b − a)2

8

)
.

We thus define a random variable Y whose probability mass function is specified as

Pr

[
Y = c̄l+1,t (il+1)

]
=

exp

(
−ηtC̄l+1,t−1(il+1)

)∑
i ′l+1

∈El+1
(Kl (il))

exp

(
−ηtC̄l+1,t−1(i

′
l+1

)

) , (20)

for ∀il+1 ∈ El+1(Kl (il)).
Since c̄l+1,t (il+1) ∈ [0, 1],∀il+1, we have that 0 ≤ Y ≤ 1 for sure. However, random variable Y

may not have zero mean. We thus denote another random variable Z = Y − E[Y]. Clearly, E[Z] = 0

and −1 ≤ Z ≤ 1 for sure. We further let λ = −ηt . Thus, by Hoeffding’s Lemma, we have

E[exp(−ηtZ)] ≤ exp

(
(−ηt)

2(1 − (−1))2

8

)
= exp

(
η2

t

2

)
. (21)

In addition, we have

E[exp(−ηtZ)] = E[exp(−ηt (Y − E[Y]))] = E[exp(−ηtY)] · exp[ηtE[Y]]. (22)

Combining (21) and (22), we get

E[exp(−ηtY)] · exp (ηtE[Y]) ≤ exp

(
η2

t

2

)
. (23)

Taking logarithm and rearranging the items in (23), we have

E[Y] ≤ −
1

ηt
lnE[exp(−ηtY)] +

ηt
2

. (24)

Now applying the probability mass function (20) into (24), we get that

E[Y] =
∑

il+1
∈El+1

(Kl (il))

exp

(
−ηtC̄l+1,t−1(il+1)

)
· c̄l+1,t (il+1)∑

i ′l+1
∈El+1

(Kl (il))
exp

(
−ηtC̄l+1,t−1(i

′
l+1

)

)
≤ −

1

ηt
lnE[exp(−ηtY)] +

ηt
2

.

= −
1

ηt
ln

∑
il+1

∈El+1
(Kl (il))

exp

(
−ηtC̄l+1,t−1(il+1)

)
· exp(−ηt c̄l+1,t (il+1))∑

i ′l+1
∈El+1

(Kl (il))
exp

(
−ηtC̄l+1,t−1(i

′
l+1

)

) +
ηt
2

.

A.2 Proof of Equality (11)
To prove (11), we only need to show that

Φt (ηt) − Φt (ηt+1) ≤ ln 2 · n

(
1

ηt+1

−
1

ηt

)
. (25)

The second inequality of (11) simply follows from ηt =
√n

t . We next prove (25).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 2, Article 25. Publication date: June 2018.

25:22 Lin Yang, Lei Deng, Mohammad H. Hajiesmaili, Cheng Tan, and Wing Shing Wong

We call a vector z = (z1, z2, . . . , zm) ∈ R
m a non-increasing non-negative vector if z1 ≥ z2 ≥ · · · ≥

zm ≥ 0. We then define a function

Ψ(a, z)
def

= −
1

a
ln

m∑
j=1

exp

(
−azj

)
, a > 0,

where z = (z1, z2, · · · , zm) is a non-increasing non-negative vector in Rm . We further define a

function ℏ(•) mapping from a non-increasing non-negative vector to another non-increasing non-

negative vector, where ℏ(z) changes all largest elements of z into the second-largest element of z.
Namely, if the first k elements x are the largest, i.e., z1 = z2 = · · · = zk > zk+1 ≥ · · · ≥ zm , then

ℏ(z) = (zk+1, zk+1, . . . , zk+1︸ ︷︷ ︸
In total k

, zk+1, zk+2, . . . , zm).

Clearly, if we apply function ℏ(•) to a non-increasing non-negative vector x form times, we get a

constant vector zmin = (zm , zm , · · · , zm).
We have the following lemma.

Lemma A.2. For a > b > 0, any non-increasing non-negative vector z, we have

Ψ(a, z) − Ψ(b, z) ≤ Ψ(a, ℏ(z)) − Ψ(b, ℏ(z)). (26)

Proof. (i) If z is a constant vector, i.e., z1 = z2 = · · · = zm , then ℏ(z) = z and thus (26) holds as

an equality.

(ii) If z is not a constant vector, we assume that the largest element of z is z and there are in total

k < m largest elements in z, i.e., z = z1 = z2 = · · · = zk > zk+1 ≥ zk+2 · · · ≥ zm .
Then

Ψ(a, z) − Ψ(b, z)

= −
1

a
ln

©«k exp (−az) +
m∑

j=k+1

exp

(
−azj

)ª®¬ + 1

b
ln

©«k exp (−bz) +
m∑

j=k+1

exp

(
−bzj

)ª®¬ def

= ϒ(z), (27)

where the last equality defines a function with respect to z satisfying z > zk+1. Taking the derivative

on ϒ(z) with respect to z, we get

∂ϒ(z)

∂z
=

k exp (−az)

k exp (−az) +
∑m

j=k+1
exp

(
−azj

) − k exp (−bz)

k exp (−bz) +
∑m

j=k+1
exp

(
−bzj

) .
Define

Θ(σ)
def

=
k exp (−σz)

k exp (−σz) +
∑m

j=k+1
exp

(
−σzj

) .
Then we have that

∂ϒ(z)

∂z
= Θ(a) − Θ(b). (28)

Taking derivative on Θ(σ) with respect to σ , we get

∂Θ(σ)

∂σ
=
k exp (−σz)

∑m
j=k+1

(zj − z) exp

(
−σzj

)(
k exp (−σz) +

∑m
j=k+1

exp

(
−σzj

))2
.

Since z > zj , for j = k + 1,k + 2, . . . ,m, we have
∂Θ(a)
∂a < 0. Because a > b, so we have

∂ϒ(z)

∂z
= Θ(a) − Θ(b) < 0, ∀z > zi+1.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 2, Article 25. Publication date: June 2018.

An Optimal Algorithm for Online Non-Convex Learning 25:23

Thus, ϒ(z) < ϒ(zi+1). By noting that ϒ(zi+1) = Ψ(a, ℏ(z)) − Ψ(b, ℏ(z)), we thus have

Ψ(a, z) − Ψ(b, z) < Ψ(a, ℏ(z)) − Ψ(b, ℏ(z)).

Part (i) and part (ii) complete the proof. □

Based on Lemma A.2, we can immediately obtain the following result.

Lemma A.3. For a > b > 0 and any non-increasing non-negative vector z ∈ Rm , we have

Ψ(a, z) − Ψ(b, z) ≤

(
1

b
−

1

a

)
lnm. (29)

Proof. From Lemma A.2, we have

Ψ(a, z) − Ψ(b, z) ≤Ψ(a, ℏ(z)) − Ψ(b, ℏ(z))

≤Ψ(a, ℏ(ℏ(z))) − Ψ(b, ℏ(ℏ(z)))

≤ · · ·

≤Ψ(a, zmin) − Ψ(b, zmin)

=

(
1

b
−

1

a

)
lnm,

where zmin = (zm , zm , . . . , zm). This completes the proof. □

We can sort all C̄l+1,t (il+1)’s where il+1 ∈ El+1(Kl (il)) in a descending order and construct a

non-increasing non-negative vector z ∈ R |El+1
(Kl (il)) |

. Then based on Lemma A.2, we have

Φt (ηt) − Φt (ηt+1) =Ψ(ηt , z) − Ψ(ηt+1, z)

≤

(
1

ηt+1

−
1

ηt

)
ln |El+1(Kl (il))|

≤

(
1

ηt+1

−
1

ηt

)
n ln 2, (30)

where the last inequality follows from |El+1(Kl (il))| ≤ 2
n
.

This completes the proof for inequality (11).

A.3 Proof of Inequality (13)

First, we have

exp

(
ηT max

il+1
∈El+1

(il)
[−C̄l+1,T (il+1)]

)
≤

∑
il+1

∈El+1
(il)

exp

(
−ηT C̄l+1,T (il+1)

)
. (31)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 2, Article 25. Publication date: June 2018.

25:24 Lin Yang, Lei Deng, Mohammad H. Hajiesmaili, Cheng Tan, and Wing Shing Wong

Taking logarithm and dividing by − 1

ηT
< 0 in both sides of (31), we can get that

ΦT (ηT) = −
1

ηT
ln

∑
il+1

∈El+1
(Kl (il))

exp

(
−ηT C̄l+1,T (il+1)

)
≤ min

il+1
∈El+1

(Kl (il))
C̄l+1,T (il+1)

≤C̄l+1,T (i
′′
l+1

) (∀i ′′l+1
∈ El+1(Kl (il)))

=

T∑
t=1

c̄l+1,t (i
′′
l+1

)

=

T∑
t=1

E

cm,t (Im,t) − min

im ∈Em (Kl−1
(vl−1

(il)))
cm,t (im)

2
m−l+1Lm

|Il+1,t = i
′′
l+1

 , (32)

where the second last equality follows from the definition of C̄l ,t (il) in (8) and the last equality

follows from the definition of c̄l ,t (il) in (4) andvl (i
′′
l+1

) = il .
This completes the proof.

A.4 Proof of Lemma 5.2
Proof. Analogous to Equation (9), we have Equation (33) which characterizes the regret loss at

each layer. In Equation (33), equality (E1) is according to the definition for the normalized expected
cost shown in Equation (17). Equality (E2) is simply by the choosing probability for subsets at each

layer. Inequality (E3) has been proved in Section (A.1). Equality (E4) follows from the update law

for the cumulative expected cost. Inequality (E5) is based on the Equation (11) and (12), as well as

the following inequality

−Φtl+1
−1(ηtl+1

) =
1

ηtl+1

ln

∑
il+1

∈El+1
(Kl (il))

exp

(
−ηtl+1

C̄l+1,tl+1
−1(il+1)

)
=

1

ηtl+1

ln |El+1(Kl (il))| ≤
√
ntl+1.

Inequality (E6) is proved in Section A.3.

With the results in Equation (33), we have Equation (34).

In Equation (34), the equalities follow from the fact that∑
t ∈Tl

E[c ′mt ,t (Imt ,t)|Il ,t = i
∗
l] −

∑
t ∈Tl

c ′mt ,t (i
∗
mt

)

=
∑
t ∈Tl+1

E[c ′mt ,t (Imt ,t)|Il ,t = i
∗
l] −

∑
t ∈Tl+1

c ′mt ,t (i
∗
mt

).

□

Received February 2018; revised May 2018; accepted June 2018

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 2, Article 25. Publication date: June 2018.

An Optimal Algorithm for Online Non-Convex Learning 25:25

∑
t∈Tl+1

E[c′mt ,t (Imt ,t) |Il ,t = il]

=
∑

t∈Tl+1

∑
il+1

∈El+1

(
Kl (il)

) Pr[Il+1,t = il+1
|Il ,t = il] · E

[
c′mt ,t (Imt ,t) |Il+1,t = il+1

]
(E1)
=

∑
t∈Tl+1

∑
il+1

∈El+1

(
Kl (il)

) Pr[Il+1,t = il+1
|Il ,t = il] ·

[
c̄′l+1,t (il+1

) · 2
mt −l Lmt + min

imt ∈Emt (Kl (il))
c′mt ,t (imt)

]

=
∑

t∈Tl+1

∑

il+1
∈El+1

(Kl (il))

Pr[Il+1,t = il+1
|Il ,t = il] · c̄

′
l+1,t (il+1

) · 2
mt −l Lmt + min

imt ∈Emt (Kl (il))
c′mt ,t (imt)

(E2)
=

∑
t∈Tl+1

∑
il+1

∈El+1
(Kl (il))

exp

(
−ηt C̄′

l+1,t−1
(il+1

)

)
∑

i′l+1

∈El+1
(Kl (il))

exp

(
−ηt C̄′

l+1,t−1
(i′l+1

)

) · c̄′l+1,t (il+1
)

· 2
mt −l Lmt + min

imt ∈Emt (Kl (il))
c′mt ,t (imt)

(E3)
≤

∑
t∈Tl+1

−

1

ηt
ln

∑
il+1

∈El+1
(Kl (il))

exp

(
−ηt C̄′

l+1,t−1
(il+1

)

)
· exp

(
−ηt c̄′l+1,t (il+1

)

)
∑

i′l+1

∈El+1
(Kl (il))

exp

(
−ηt C̄′

l+1,t−1
(i′l+1

)

) +
ηt
2

· 2
mt −l Lmt + min

im ∈Emt (Kl (il))
c′mt ,t (imt)

(E4)
=

∑
t∈Tl+1

−

1

ηt
ln

∑
il+1

∈El+1
(Kl (il))

exp

(
−ηt C̄′

l+1,t (il+1
)

)
∑

i′l+1

∈El+1
(Kl (il))

exp

(
−ηt C̄′

l+1,t−1
(i′l+1

)

) + ηt
2

· 2
mt −l Lmt +

∑
t∈Tl+1

min

imt ∈Emt (Kl (il))
c′mt ,t (imt)

=
∑

t∈Tl+1

[
Φt (ηt) − Φt−1(ηt) +

ηt
2

]
· 2
mt −l Lmt +

∑
t∈Tl+1

min

imt ∈Emt (Kl (il))
c′mt ,t (imt)

=

ΦT (ηT) +

T−1∑
t=tl+1

(Φt (ηt) − Φt (ηt+1)) − Φtl+1
−1(ηtl+1

) +

T∑
t=tl+1

ηt
2

 · 2
mt −l Lmt +

∑
t∈Tl+1

min

imt ∈Emt (Kl (il))
c′mt ,t (imt)

(E5)
≤

ΦT (ηT) + ln 2 · n

(
1

ηT
−

1

ηtl+1

)
− Φtl+1

−1(ηtl+1
) +

T∑
t=tl+1

ηt
2

 · 2
mt −l Lmt +

∑
t∈Tl+1

min

imt ∈Emt (Kl (il))
c′mt ,t (imt)

≤

{
ΦT (ηT) +

√
nT +

√
ntl+1

+
√
nT

}
· 2
mt −l Lmt +

∑
t∈Tl+1

min

imt ∈Emt (Kl (il))
c′mt ,t (imt)

(E6)
≤

∑

t∈Tl+1

E

[
c′mt ,t (Imt ,t) − minimt ∈Emt (Kl (il))

c′mt ,t (imt)

2
mt −l Lmt

|Il+1,t = i
′′
l+1

]
+ 3

√
nT

 · 2
mt −l Lmt +

∑
t∈Tl+1

min

imt ∈Emt (Kl (il))
c′mt ,t (imt)

≤
∑

t∈Tl+1

E
[
c′mt ,t (Imt ,t) |Il+1,t = i

′′
l+1

]
+ 3

√
nT · 2

mt −l Lmt

=
∑

t∈Tl+1

E
[
c′mt ,t (Imt ,t) |Il+1,t = i

′′
l+1

]
+ 3DLn

√
T ·

1

2
l
, ∀i′′l+1

∈ El+1
(Kl (il))

(33)

∑
t∈T
E[c′mt ,t (Imt ,t)] −

∑
t∈T

c′mt ,t (i
∗
mt) =

∑
t∈T
E[c′mt ,t (Imt ,t) |I0,t = i

∗
0
] −

∑
t∈T

c′mt ,t (i
∗
mt)

(E1)
=

∑
t∈T

1

E[c′mt ,t (Imt ,t) |I0,t = i
∗
0
] −

∑
t∈T

1

c′mt ,t (i
∗
mt) ≤

∑
t∈T

1

E
[
c′mt ,t (Imt ,t) |I1,t = i

∗
1

]
−

∑
t∈T

1

c′mt ,t (i
∗
mt) + 3DLn

√
T ·

1

2
0

(E2)
=

∑
t∈T

2

E
[
c′mt ,t (Imt ,t) |I1,t = i

∗
1

]
−

∑
t∈T

2

c′mt ,t (i
∗
mt) + 3DLn

√
T ·

1

2
0

≤
∑
t∈T

2

E
[
c′mt ,t (Imt ,t) |I1,t = i

∗
2

]
−

∑
t∈T

2

c′mt ,t (i
∗
mt) + 3DLn

√
T ·

(
1

2
0
+

1

2
1

)
≤ · · · ≤ 3DLn

√
T ·

(
1

2
0
+

1

2
1
+ · · · + +

1

2
m

)
≤ 6DLn

√
T .

(34)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 2, Article 25. Publication date: June 2018.

	Abstract
	1 Introduction
	1.1 Background and Motivation
	1.2 Related Results
	1.3 Our Contributions and Adopted Techniques
	1.4 Basic Notations and Organizations

	2 Problem Setting of Online Non-Convex Learning
	3 Online Recursive Weighting Algorithm
	3.1 A Layered Grid Structure
	3.2 Sampling
	3.3 Recursive Choosing Policy

	4 Regret Analysis for the Online Recursive Weighting Algorithm
	5 Adaptive Sampling
	5.1 Online Recursive Weighting Algorithm with Adaptive Sampling
	5.2 Regret Analysis

	6 Extensions and State-of-the-art Results
	6.1 Online Optimization in a Decentralized Environment
	6.2 Partial Information Feedback

	7 Conclusion
	References
	A Proofs
	A.1 Proof of Inequality (10)
	A.2 Proof of Equality (11)
	A.3 Proof of Inequality (13)
	A.4 Proof of Lemma 5.2

